
IEEE-ISTO 5001™ - 2003

The Nexus 5001 Forum™
Standard for a Global Embedded Processor

Debug Interface

Version 2.0

23 December 2003

IEEE- Industry Standards and Technology Organization (IEEE-ISTO)
445 Hoes Lane • Piscataway, NJ 08854 USA
Phone +1732.465.6466 • Fax +1.732.981.9473 • http://www.ieee-isto.org

IEEE-ISTO 5001™ - 2003

The Nexus 5001 Forum™ Standard for a
Global Embedded Processor Debug

Interface

Recognized by the IEEE Vehicular Technology Society

History: The Global Embedded Processor Debug Interface Standard (GEPDIS) Consortium was formed
in April 1998 to define and develop a much-needed embedded processor debug interface standard for
embedded control applications. On 23 September 1999, the GEPDIS Consortium chose the IEEE
Industry Standards and Technology Organization (IEEE-ISTO) as the operational and legal forum in
which to continue its efforts. During the transition, the group also changed its name to the Nexus 5001
Forum™ to reflect the submission of Version 1.0 of their standard to the IEEE-ISTO for publication,
distribution and future management as IEEE-ISTO 5001™ - 1999, The Nexus 5001 Forum™ Standard for
a Global Embedded Processor Debug Interface. On 15 December 2003, Version 2.0 of the IEEE-ISTO
5001™ - 2003 was approved by membership, and published.

Abstract: A general-purpose specification that addresses the rigorous challenges for debug interfaces is
outlined. Auxiliary pin functions, transfer protocols and standard development features are defined.

Keywords: Application Programming Interface (API), auxiliary port, Boolean, breakpoint, bit, client,
compliance classification, debug interface, embedded processor, emulator, full-duplex, half-duplex,
Hardware Abstraction Layer (HAL), high-speed input/output (HSIO), low-speed input/output (LSIO),
Nexus, pin, register, Target Abstraction Layer (TAL), watchpoint.

 © 2003, IEEE Industry Standards and Technology Organization. All rights reserved.
 The IEEE-ISTO is affiliated with the IEEE and the IEEE Standards Association.
 IEEE-ISTO 5001 and Nexus 5001 Forum are trademarks of the IEEE-ISTO.

IEEE-ISTO 5001™ - 2003

Copyright 2003 IEEE-ISTO. All rights reserved.
This document may be copied and furnished to others, and derivative works that comment on, or
otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright notice, this paragraph
and the title of the Document as referenced below are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright notice
or references to the IEEE-ISTO and the Nexus 5001 Forum™.

Title: The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface,
Version 2.0

The IEEE-ISTO and the Nexus 5001 Forum™ DISCLAIM ANY AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING (WITHOUT LIMITATION) ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

The Nexus 5001 Forum™, a program of the IEEE-ISTO, reserves the right to make changes to the
document without further notice. The document may be updated, replaced or made obsolete by other
documents at any time.

The IEEE-ISTO takes no position regarding the validity or scope of any intellectual property or other rights
that might be claimed to pertain to the implementation or use of the technology described in this
document, or the extent to which any license under such rights might or might not be available; neither
does it represent that it has made any effort to identify any such rights.

The IEEE-ISTO invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to practice this
standard. The IEEE-ISTO and its programs shall not be responsible for identifying patents for which a
license may be required by an IEEE-ISTO Industry Group Standard or for conducting inquiries into the
legal validity or scope of those patents that are brought to its attention. Inquiries may be submitted to the
IEEE-ISTO by e-mail at: info@ieee-isto.org.

The Nexus 5001 Forum™ acknowledges that the IEEE-ISTO (acting itself or through its designees) is,
and shall at all times, be the sole entity that may authorize the use of certification marks, trademarks or
other special designations to indicate compliance with these materials.

Use of this IEEE-ISTO Industry Group Standard is wholly voluntary. The existence of an IEEE-ISTO
Industry Group Standard does not imply that there are no other ways to produce, test, measure,
purchase, market or provide other goods and services related to its scope.

Page ii Copyright © 2003 IEEE-ISTO. All rights reserved.

mailto:info@ieee-isto.org

IEEE-ISTO 5001™ - 2003

About the IEEE-ISTO

The IEEE-ISTO is a not-for-profit corporation offering industry groups an innovative and flexible
operational forum and support services. The IEEE-ISTO provides a forum not only to develop standards,
but also to facilitate activities that support the implementation and acceptance of standards in the
marketplace. The organization is affiliated with the IEEE (http://www.ieee.org/) and the IEEE Standards
Association (http://standards.ieee.org/).

For additional information regarding the IEEE-ISTO and its industry programs visit http://www.ieee-
isto.org.

About the Nexus 5001 Forum™

The Nexus 5001 Forum™ (formerly known as the Global Embedded Processor Debug Interface
Consortium) is chartered to advance the development, dissemination and implementation of the Global
Embedded Processor Debug Interface Standard. The Nexus 5001 Forum™ is open to all interested
parties.

For additional information (membership, procedures, articles, news releases, etc.) regarding the Nexus
5001 Forum™, visit http://www.nexus5001.org.

Feedback

Comments and questions may be submitted to the Nexus 5001 Forum™ through the IEEE-ISTO:

Nexus 5001™ Forum Program Manager
C/o IEEE-ISTO
445 Hoes Lane
Piscataway, NJ 08854 USA
Telephone: +1.732.465.6466
Fax: +1.732.562.1571
Email: nexus-admin@nexus5001.org

Copyright © 2003 IEEE-ISTO. All rights reserved. Page iii

http://www.ieee.org/
http://standards.ieee.org/
http://www.nexus5001.org/

IEEE-ISTO 5001™ - 2003

Preface

The Nexus 5001 Forum™ (formerly known as the Global Embedded Processor Debug Interface
Consortium) is chartered to advance the development, dissemination and implementation of
IEEE-ISTO 5001™-1999, the Nexus 5001 Forum Standard for a Global Embedded Processor
Debug Interface.

The industry group was formed in April 1998 to define and develop a much-needed embedded
processor debug interface standard for embedded control applications. As advances in
semiconductor and system design continue, embedded applications are using higher
performance embedded processors. Efficient use of these embedded processors requires
software and hardware development tools that can easily access critical processor functionality.

However, the lack of a unifying standard among the various embedded processors on the market
at the time of publication has impeded this accessibility, preventing tool vendors from creating
standard tools with consistent functionality across a broad range of processors. This, in turn, has
become a gating factor for chipmakers, tool providers and developers. Ultimately customers are
forced to pursue costly custom solutions to meet their tool needs.

IEEE-ISTO 5001-1999, the Nexus 5001 Forum Standard for a Global Embedded Processor
Debug Interface is an open industry standard that provides a general-purpose interface for the
software development and debug of embedded processors. Standardization on this interface
benefits customers' reuse of their Nexus 5001™ compliant development tools on compliant
processor architectures. A future method and a process by which Nexus 5001 compliance can be
validated will further global implementation of the standard.

Although the initial focus of the effort was based on the stringent requirements of the automotive
powertrain applications, a general purpose standard has been developed, aimed to also benefit
data communications and computer peripherals, wireless systems and other embedded control
applications industries.

The Nexus 5001 Forum is open to all interested companies. Members of the Forum represent all
aspects of the technologies required for embedded control applications: embedded processor
suppliers, independent tools providers, semiconductor and hardware development tools, and
software tools (emulators, compilers, simulators, debuggers, RTOS's, etc.).

Additional information regarding the Nexus 5001 Forum can be found its website at
http://www.nexus5001.org/.

Page iv Copyright © 2003 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-2003
SECTION 1
Introduction

1.1 Overview .. 1
1.2 Basic Development Needs for Embedded Processors .. 2
1.3 Useful Development Features for Embedded Processors 2
1.4 Terms and Definitions .. 4
1.5 Conventions ... 6
1.6 Other Terminology within the Nexus Standard... 6

SECTION 2
Compliance and Performance Classifications

2.1 Compliance Classification .. 7
2.1.1 Compliance Sub-Class for Application-Specific Development Needs........ 9

2.2 Performance Classification... 9
2.2.1 Interpreting Performance Classification ... 10

SECTION 3
Nexus Development Interface

3.1 Overview .. 11
3.2 IEEE 1149.1 Pin Interface .. 12
3.3 Nexus Auxiliary Pin Interface ... 13

SECTION 4
Nexus Development Features

4.1 Application Programming Interface (API) ... 15
4.1.1 Overview .. 15

4.2 Development Control and Status.. 16
4.2.1 Overview .. 16
4.2.2 NRRs.. 16

4.3 Ownership Trace .. 17
4.3.1 Overview .. 17
4.3.2 Ownership Trace Messaging (OTM) .. 17

4.4 Program Trace ... 18
4.4.1 Overview .. 18
4.4.2 Branch Trace Messaging (BTM) .. 18
4.4.3 Program Trace Overrun Errors... 20
4.4.4 Program Trace Synchronization... 20

4.5 Data Trace.. 21
4.5.1 Overview .. 21
4.5.2 Data Trace Messaging (DTM) .. 22
4.5.3 Data Trace Overrun Errors ... 22
4.5.4 Data Trace Synchronization ... 22

4.6 Read/Write Access... 23
4.6.1 Overview .. 23
4.6.2 Read/Write Access Messaging .. 23

4.7 Memory Substitution... 24
Copyright © 2003 IEEE-ISTO. All rights reserved. Page v

IEEE-ISTO 5001™-2003
4.7.1 Overview .. 25
4.7.2 Memory Substitution Messaging (MSM)... 25

4.8 Breakpoints/Watchpoints.. 27
4.8.1 Overview .. 27
4.8.2 Breakpoint/Watchpoint Messaging ... 27

4.9 Port Replacement and Port Sharing (Optional).. 28
4.9.1 Overview .. 28
4.9.2 Port Replacement for Low-Speed I/O (LSIO) Pins 28
4.9.3 Port Replacement for High-Speed I/O (HSIO) Pins (Port Sharing) 30

4.10 Data Acquisition (Optional)... 31
4.10.1 Overview .. 31
4.10.2 Data Acquisition Messaging (DQM) ... 31

4.11 Timestamping (Optional) .. 31
4.11.1 Overview .. 31
4.11.2 Timestamping via AUX... 32
4.11.3 Timestamping via pins.. 32

SECTION 5
Nexus Public Messages

5.1 Compliance Requirements for Public Messages.. 33
5.2 Definitions and Terminology... 35
5.3 Detailed Description of Public Messages ... 39

5.3.1 Debug Status Message .. 40
5.3.2 Device ID Message .. 41
5.3.3 Ownership Trace Message .. 42
5.3.4 Program Trace - Direct Branch Message... 43
5.3.5 Program Trace - Indirect Branch Message... 44
5.3.6 Program Trace - Direct Branch with Sync Message................................. 45
5.3.7 Program Trace - Indirect Branch with Sync Message 47
5.3.8 Program Trace - Resource Full Message... 49
5.3.9 Program Trace - Indirect Branch History Message 50
5.3.10 Program Trace - Indirect Branch History with Sync Message.................. 51
5.3.11 Program Trace - Synchronization Message ... 53
5.3.12 Program Trace - Correction Message .. 55
5.3.13 Program Trace - Repeat Branch Message... 56
5.3.14 Program Trace - Repeat Instruction Message.. 57
5.3.15 Program Trace - Repeat Instruction with Sync Message 58
5.3.16 Program Trace - Correlation Message ... 60
5.3.17 Data Trace - Data Write/Read Messages... 61
5.3.18 Data Trace - Data Write/Read with Sync Messages 62
5.3.19 Data Acquisition Message.. 65
5.3.20 Error Message.. 65
5.3.21 Watchpoint Match Message ... 67
5.3.22 Port Replacement - Output Message ... 68
5.3.23 Port Replacement - Input Message.. 68
5.3.24 NRR Access - Target Ready Message... 69

Page vi Copyright © 2003 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-2003
5.3.25 NRR Access - Read Register Message ... 69
5.3.26 NRR Access - Write Register Message.. 70
5.3.27 NRR Access - Read/Write Response Message 71
5.3.28 Memory Access - Read Target/Tool Message ... 72
5.3.29 Memory Access - Write Target/Tool Message ... 73
5.3.30 Memory Access - Read Next Target/Tool Data Message 74
5.3.31 Memory Access - Write Next Target/Tool Data Message 75
5.3.32 Memory Access - Target Response Message.. 76
5.3.33 Memory Access - Tool Response Message... 77

5.4 NRR Access Messages - Example Sequences ... 78
5.5 Memory Access Messages - Example Sequences .. 79

5.5.1 Tool Accessing Target.. 80
5.5.2 Target Accessing Tool.. 82
5.5.3 Termination of Tool/Target Messaging... 83

SECTION 6
Nexus Port Signals

6.1 IEEE 1149.1 Pin Functions .. 86
6.2 Nexus Auxiliary Pin Functions.. 87
6.3 Sample Port Implementations .. 87

SECTION 7
AUX Message Protocol

7.1 Rules for Messages.. 92
7.2 Example AUX Messages Using Nexus Protocol .. 93

SECTION 8
IEEE 1149.1 Message Protocol

8.1 IEEE 1149.1 Compatibility.. 95
8.1.1 Accessing the IEEE 1149.1 Device ID ... 96
8.1.2 Optional Ready (RDY) Output Pin.. 97

8.2 Accessing NRRs via the IEEE 1149.1 Port .. 97
8.2.1 NRR Access Protocol ... 97
8.2.2 NRR Access Status (Optional) ... 99

8.3 Read/Write Access via the IEEE 1149.1 Port .. 100
8.4 Accessing Nexus Public Messages via the IEEE 1149.1 Port 100

8.4.1 Nexus Input/Output Public Message Registers (IPMR/OPMR).............. 100
8.4.2 Nexus Public Message Access Protocol .. 101
8.4.3 Using RDY as Output Message Flag ... 103

8.5 Sample IEEE 1149.1 Access Sequences .. 103

SECTION 9
Implementation Topics

9.1 Nexus Reset Configuration .. 107
9.1.1 Reset for AUX-Only (Full-Duplex) Implementations 107
9.1.2 Reset for IEEE 1149.1 Implementations .. 107
9.1.3 Reset and Port Replacement ... 108
Copyright © 2003 IEEE-ISTO. All rights reserved. Page vii

IEEE-ISTO 5001™-2003
9.2 Multiple Processor Implementations .. 108
9.3 Multiple Address Threads... 108
9.4 Simultaneous Development of Multiple Embedded Processors......................... 109
9.5 Security .. 110
9.6 Single Master for Tool Connection ... 110

APPENDIX A
Connector and Electrical Specifications

A.1 Connection Options... 111
A.2 DC Electrical Characteristics... 125
A.3 AC Electrical Characteristics - General... 126
A.4 AC Electrical Characteristics - IEEE 1149.1 Interface 126
A.5 AC Electrical Characteristics - AUX .. 127
A.6 Terminations ... 129

APPENDIX B
Recommendations for Access to Control and Status Registers

B.1 Overview ... 131
B.2 Reset... 134
B.3 Access with the IEEE 1149.1 Interface ... 134
B.4 Access with the AUX... 135
B.5 NRRs - Control and Status.. 135
B.6 NRRs - Read/Write Access... 142
B.7 NRRs - Data Trace.. 146
B.8 NRRs - Breakpoint/Watchpoint ... 148
B.9 NRRs Concatenated for Better Transfer Efficiency... 150

APPENDIX C
Data Acquisition in Tuning for Applications

C.1 Additional Needs for Automotive Powertrain and Disk Drive Development 153
C.2 Data Acquisition or Measurement of Calibration Variables............................. 154
C.3 Tuning of Calibration Constants.. 154

APPENDIX D
Bibliography

Page viii Copyright © 2003 IEEE-ISTO. All rights reserved.

SECTION 1
Introduction

1.1 Overview

The Nexus 5001 Forum™ (http://www.ieee-isto.org/Nexus5001/), previously
referred to as the Global Embedded Processor Debug Interface Standard
Consortium (GEPDISC), was formed to develop a much needed embedded
processor debug interface standard for embedded control applications. The
internal name for this standard is “Nexus,” which is used throughout this
document only.

The goal is a general-purpose specification that addresses the rigorous
challenges for debug interfaces. Applications that may benefit from this standard
interface include automotive powertrain, data communications, computer
peripherals, wireless systems, and other control applications.

As advances in semiconductor and system design continue, embedded
applications are using higher performance embedded processors. Efficient use of
these embedded processors requires software and hardware development tools
that can easily access critical processor functionality. The lack of a unifying
standard among the various embedded processors on the market has impeded
this accessibility and prevented tool vendors from creating standard tools with
consistent functionality across a broad range of processors. Ultimately, system
developers are forced to pursue costly custom solutions to meet their tool needs.

To provide the best opportunity for achieving a worldwide development interface
standard, it is prudent to leverage off an accepted pin interface and hardware
transfer protocol that exist today— the IEEE 1149.1 standard.1 The Nexus
standard defines an extensible Auxiliary Port (AUX) that may either be used with
the IEEE 1149.1 port or as a stand-alone development port. The Nexus standard
defines the auxiliary pin functions, transfer protocols, and standard development
features.

1For information on references, see Appendix D - Bibliography.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 1 of 157 Pages

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
1.2 Basic Development Needs for Embedded Processors

Developers of embedded processors need to have access to a basic set of
development tool functions in order to accomplish their jobs. For run control the
basic needs are

• To query and modify when the processor is halted, showing all locations
available in the processor’s supervisor map.

• To support breakpoint/watchpoint features in debuggers, either as
hardware or software breakpoints depending on the architecture.
Configuration of breakpoint/watchpoint features may be performed
when the processor is halted.

For logic analysis the basic needs are

• To access instruction trace information with acceptable impact to the
system under development. The developer needs to be able to
interrogate and correlate instruction flow to real-world interactions.

• To retrieve information on how data flow through the system with
acceptable impact to the system under development and to understand
what system resource(s) are creating and accessing data.

• To assess whether embedded software is meeting the required
performance level with acceptable impact to the system under
development.

1.3 Useful Development Features for Embedded Processors

The evolution of high-performance microprocessor units (MPUs) and highly
integrated microcomputer units (MCUs) has had an impact on development
processes and tools. High-performance on-chip caches, flash and random access
memory (RAM), and other changes have eliminated the internal visibility needed
for instruction and data trace. Thus, there are specific features the Nexus
standard should address, as listed below:

1. Program trace visibility is needed for development tools with acceptable
impact to the system under development. With high-performance on-
chip instruction cache and flash, visibility needed for program trace is
restricted. In some applications the external bus is used for a secondary
function, such as general-purpose input/output (GPIO), or is not
available.

2. Data trace visibility is needed for development tools with acceptable
impact to the system under development. With on-chip high-
performance data cache and RAM, the visibility needed for data trace is
restricted. Two types of data visibility are needed:

Page 2 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
a. Which process (i.e., which instruction address) wrote which data
parameter, and what new value was written?

b. For a chosen data parameter, which process(es) accessed it?

3. A standard development methodology and tool set is needed for
embedded applications. Because vendors of embedded processors
generally do not support the same development interface/methodology,
development methodology and tools are not compatible.

4. A development pin interface standard is needed to support development
with multiple clients (processor cores or intelligent peripherals) on the
embedded processor. The development pin interface comprises basic
visibility and controllability of each processor independently.

5. An independent processor development pin interface standard is
needed to support development for all mainstream processor
architectures.

6. An embedded development pin interface standard is needed to allow for
connection to multiple development tools. Tool arbitration may be
needed if multiple development tool boxes are connected to the same
target. Arbitration among tools is not addressed in this standard.

7. Multiplexing of development pin functions should be performed in a
manner so that undue constraints are not placed on the developer of the
embedded system. MCU vendors occasionally multiplex on the same
pins development functions and GPIO. Guidelines should be given to
eliminate improper multiplexing, especially out of reset, which can lead
to unpredictable behaviors and anomalies in development tools.
Development pins should be configurable to be in development mode
out of reset.

8. A scalable development pin interface standard, which will work for
different price targets of embedded MCUs/MPUs, is needed.

9. An embedded development pin interface standard is needed for cost-
effective tools.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 3 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
1.4 Terms and Definitions

Table 1-1 lists terms and definitions used in the Nexus standard.

Table 1-1—Terms and Definitions

Term Definitions

Address
The term is used to indicate logical address. If there is no address transla-
tion in an application, then it also refers to the physical address.

Application Programming
Interface (API)

API abstracts the semantics of Appendix B - Recommendations for
Access to Control and Status Registers so that a tool can perform a com-
mon set of operations on any target, irrespective of hardware registers
implemented on the target.

Auxiliary Port (AUX)

Refers to the Nexus auxiliary port. Used as auxiliary port to the IEEE 1149.1
interface or as a stand-alone development port. The AUX consists of sepa-
rate input and output ports called Auxilliary Input Port (AUX IN) and Auxiliary
Output Port (AUX OUT). The ports are optional depending on the imple-
mented class.

Branch Trace Messaging
(BTM)

Visibility of addresses for taken branches and exceptions. Also, the number
of sequential instruction units executed between each taken branch.

Data Breakpoint
Processor is halted at an appropriate instruction boundary after a trigger is
set at a data valid time. The trigger is set when the data address and/or
value matches a pre-selected address and/or value.

Calibration Constants
Performance-related constants that must be tuned for automotive power-
train and disk drive applications.

Calibration Variables
Intermediate calculations that must be visible during the calibration or tuning
process to enable accurate tuning of calibration constants.

Client
A functional block on an embedded processor that will require development
visibility and controllability. Examples are a central processing unit (CPU)
and an intelligent peripheral.

Data Acquisition Messaging
(DQM)

Visibility of related data parameters stored in internal resources, e.g.,
related calibration variables for automotive applications.

Data Read Messaging
(DRM)

Visibility of data reads to internal memory-mapped resources, e.g., on-chip
RAM.

Data Write Messaging
(DWM)

Visibility of data writes to internal memory-mapped resources, e.g., on-chip
RAM.

Data Trace Messaging
(DTM)

Visibility of how data flow through the embedded system. May include DRM
and DWM. Refer to 1.3 - Useful Development Features for Embedded
Processors for more information on data trace requirements.

Full-duplex
Messages can be transmitted in both directions between tool and target
simultaneously.

Global Embedded
Processor Debug Interface

Standard Consortium
(GEPDISC)

GEPDISC, renamed the Nexus 5001 Forum™ (http://www.ieee-isto.org/
Nexus5001/), was formed to develop a much needed embedded processor
debug interface standard for embedded control applications. The internal
name for this standard is “Nexus,” which is used throughout this document
only.

Half-duplex
Messages can be transmitted in only one direction at a time between tool
and target.

Page 4 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
Hardware Breakpoint
Typically a hardware comparator used to halt the processor at an appropri-
ate instruction boundary after an address or data value matches a pre-
selected address or data value.

High-Speed Input/Output
(HSIO)

The term HSIO, as used in the Nexus standard, is intended to refer to an
external bus of the embedded processor. Assertion and negation timing are
critical to system integrity.

Instruction Breakpoint
Processor is halted when all previous instructions are retired and just prior to
when any architectural state is changed by the instruction associated with a
pre-selected address.

Instruction Units

Most Program Trace Messages have a packet that indicates the number of
instruction units executed since the last taken branch. In target architectures
in which all instructions are the same size, then this packet contains the
actual number of instructions executed since last taken branch.

If instructions are of variable size, then the number reported is the number of
instruction units. The instruction unit represents the number of bytes or
words associated with the highest common denominator of the variable
instruction sizes.

IEEE 1149.1 Instruction
Register (IR) and Data Reg-

ister (DR) Sequence

IEEE 1149.1 IR scan loads an opcode value for selecting a development
register. The selected development register is then accessed via an IEEE
1149.1 DR scan.

Low-Speed Input/Output
(LSIO)

LSIO pin functions are typically implemented on MCUs, e.g., an output pin
to set system configuration. Assertion and negation timing are not critical to
system integrity.

Nexus Internal code name for this standard.

Nexus API API required by the Nexus standard.

Ownership Trace
Messaging (OTM)

Visibility of the process/function that is currently executing.

Public Messages

Public Messages are defined for the AUX and the IEEE 1149.1 interface.
These messages must be used for designated functions when these func-
tions are implemented. Public Messages are specified pin protocols for
accomplishing common configuration, status, and visibility (e.g., DRM and
DWM).

Read-Only Memory (ROM) Read-only memory, such as nonvolatile flash.

Standard
The phrase “according to the Nexus standard” means “according to the
Nexus standard contained in this document.”

Target
Generally refers to an end application or evaluation board, containing one or
more embedded processors, to which a development tool is connected.

Transfer Code (TCODE)
Message header that identifies the number and/or size of packets to be
transferred, and how to interpret each of the packets.

Memory Substitution
Messaging (MSM)

Messaging for a memory substitution access in which internal accesses are
redirected through the auxiliary pins defined in the Nexus standard.

Nexus-Recommended
Register (NRR)

NRRs are defined in Appendix B - Recommendations for Access to
Control and Status Registers.

Table 1-1—Terms and Definitions (Continued)

Term Definitions
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 5 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
1.5 Conventions

This document uses the following notational conventions:

ACTIVE_HIGH Names for signals that are active high are shown in
uppercase text without an overbar. Signals that are active
high are referred to as asserted when they are high and
negated when they are low.

ACTIVE_LOW A bar over a signal name indicates that the signal is active
low. Signals that are active low are referred to as asserted
(active) when they are low and negated when they are high.

0x0F Hexadecimal numbers

0b0011 Binary numbers

LSB Means least significant bit. The LSB is the lowest bit number,
e.g., bit 0

MSB Means most significant bit. The MSB is the highest bit
number, e.g., bit 31

Set bit To set a bit (or bits) means to establish logic level one on the
bit (or bits), i.e., the voltage that corresponds to Boolean true
(1) state.

Clear bit To clear a bit (or bits) means to establish logic level zero on
the bit (or bits), i.e., the voltage that corresponds to Boolean
false (0) state.

1.6 Other Terminology within the Nexus Standard

The term vendor-defined bit fields is used to indicate bit fields that may be defined
as needed for the vendor’s device.

The terms and definitions specifically associated with the Nexus-defined Public
Messages can be found at the top of Section 5 - Nexus Public Messages.

Vendor-Defined Message
Vendor-Defined Messages are allowed via the AUX and the IEEE 1149.1
interface for development features that may be specific to each vendor.
These messages must follow the protocol defined for the AUX.

Watchpoint
A data or instruction breakpoint that does not cause the processor to halt.
Instead a pin is used to signal that the condition occurred.

Table 1-1—Terms and Definitions (Continued)

Term Definitions

Page 6 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
SECTION 2
Compliance and Performance Classifications

The capability of Nexus-compliant development ports shall comprise two basic
designations: the development features supported by the port and the
performance capability for downloading and uploading via the port. All
development features described in the Nexus standard are assigned to at least
one compliance classification: Class 1, Class 2, Class 3, or Class 4.

Performance capability is designated by full- or half-duplex capability and by
transfer bandwidth in megabits per second for both downloads to the embedded
processor and uploads from the embedded processor. Thus Nexus-compliant
development ports implemented by vendors of embedded processor integrated
circuits (ICs) shall be designated as follows:

• Class 1, 2, 3, or 4 compliant

• Download rate (megabits per second)

• Upload rate (megabits per second)

• Full- or half-duplex

2.1 Compliance Classification

Complying embedded processors shall be designated as Class 1, 2, 3, or 4 or as
an approved compliance sub-class. Class 1 devices implement the fewest Nexus
development features. Class 4 devices implement the most Nexus development
features. Thus Class 4 devices offer the most development capability and
standardization. Class 1, 2, and 3 devices offer a graduated subset of the Nexus
development features, which may be appropriately suited for some applications.

Table 2-1 and Table 2-2 show the minimum features for the four compliance
classifications.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 7 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard

ure

s API

cess

nt
tatus

s/
ts

Table 2-1—Compliance Classification for Static Development Features

Development Feature Class 1 Class 2 Class 3 Class 4 Nexus Feat

Read/write user registers in debug mode V V V V Refer to Nexu

Read/write user memory in debug mode A A A A Read/Write Ac

Enter a debug mode from reset A A A A

Developme
Control and S

Enter a debug mode from user mode A A A A

Exit a debug mode to user mode A A A A

Single-step instruction in user mode and re-
enter debug mode

A A A A

Stop program execution on instruction/data
breakpoint and enter debug mode (mini-
mum 2 breakpoints)

A A A A
Breakpoint
Watchpoin

Note:
“A” indicates a required development feature that must be implemented via the Nexus API.
“V” indicates a required vendor-defined development feature implemented in the Nexus API.

Table 2-2—Compliance Classification for
Dynamic Development Features

Development Feature Class 1 Class 2 Class 3 Class 4 Nexus Feature

Ability to set breakpoint or watchpoint A A A A
Breakpoints/
Watchpoints

Device identification A A and P A and P A and P

Device ID Message
(see Section 5 -
Nexus Public

Messages)

Ability to send out an event occurrence
when watchpoint matches

Pa P P P

Watchpoint Match
Message (see

Section 5 - Nexus
Public Messages)

Monitor process ownership while pro-
cessor runs in real time

— P P P Ownership Trace

Monitor program flow while processor
runs in real time (logical address)

— P P P Program Trace

Monitor data writes while processor runs
in real time

— — P P
Data Trace

(Writes only)

Read/write memory locations while pro-
gram runs in real time

— — A and P A and P Read/Write Access

Program execution (instruction/data)
from Nexus port for reset or exceptions

— — — P
Memory

Substitution

Ability to start ownership, program, or
data trace upon watchpoint occurrence

— — — A
Development

Control and Status

Ability to start memory substitution upon
watchpoint occurrence or upon program
access of vendor-defined address

— — — O
Development

Control and Status

Page 8 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
2.1.1 Compliance Sub-Class for Application-Specific Development Needs

To comply with application-specific development needs, compliance sub-classes
for specific applications shall be approved by a standards developing
organization. Sub-classes are allowed when standardized support of application-
specific development features are needed.

2.2 Performance Classification

Complying embedded processors shall be designated by a performance
classification. The embedded processors shall be designated by full- or half-
duplex capability and by transfer bandwidth in megabits per second for both
downloads to the embedded processor and uploads from the embedded
processor.

Full- and half-duplex capability is related to compliance classification as described
in Table 2-3. Refer to Appendix A - Connector and Electrical Specifications,
which contains the connector options defined at the time this standard was
released. Other connector options are expected as this standard evolves.

Monitor data reads while processor runs
in real time

— — O O
Data Trace

(Reads and Writes)

LSIO port replacement and HSIO port
sharing

— O O O
Port Replacement/

Sharing

Transmit data values for acquisition by
tool

— — O O Data Acquisition

Note:
“A” indicates a required development feature that must be implemented via the Nexus API.
“P” indicates a required development feature that must be implemented via the Nexus development port as a
Public Message or with a Nexus port pin (as appropriate).
“O” indicates an optional development feature as defined by the Nexus standard.

a. Because no AUX is required for Class 1, the event occurrence should be provided via an Event Out (EVTO)
pin defined in Section 6 - Nexus Port Signals, or via a Message Out mechanism defined in Section 8 -
IEEE 1149.1 Message Protocol.

Table 2-3—Performance Interface Options

Development Feature Class 1 Class 2 Class 3 Class 4 Nexus Feature

IEEE 1149.1 port only X — — — Half-duplex

IEEE 1149.1 or AUX IN with an
AUX OUT

— X X X Full-duplex

Table 2-2—Compliance Classification for
Dynamic Development Features (Continued)

Development Feature Class 1 Class 2 Class 3 Class 4 Nexus Feature
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 9 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
2.2.1 Interpreting Performance Classification

System developers of embedded processors should interpret the performance
classification properly in order to assess the capability needed for their
application. To do so, a basic knowledge is needed of Nexus features, the
developer’s code characteristics and visibility needs.

The transfer bandwidth for downloads can be thought of as the sustainable input
bandwidth required to the device. Conversely, the transfer bandwidth for uploads
can be thought of as the sustainable output bandwidth required from the device.
Bandwidth requirements are typically determined by what Nexus development
features are needed during runtime. Bandwidth requirements are satisfied by AUX
size and clock rate.

The Nexus AUX is used to fulfill the output bandwidth requirements. In calculating
the average output bandwidth requirements for an application, factors that may be
considered are:

• Frequency of taken direct and indirect changes of flow

• Frequency and size of internal data reads/writes that must be visible

• Frequency and size of data that must be read from device

The Nexus AUX or the IEEE 1149.1 port is used to fulfill the input bandwidth
requirements. In calculating the average input bandwidth requirements for an
application, factors that may be considered are the frequency and size of data that
must be written to the device.

Page 10 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
SECTION 3
Nexus Development Interface

The development interface shall be implemented by Nexus Class 1, 2, 3, and 4
embedded processors as described in Table 2-3. The development features shall
be implemented by Nexus Class 1, 2, 3, and 4 embedded processors as
described in Table 2-1 and Table 2-2.

3.1 Overview

Embedded processors complying with Class 1 shall implement the IEEE 1149.1
standard for access to the minimum development features of compliance Class 1.
Embedded processors complying with Class 2, 3, or 4 shall implement a Nexus
pin interface according to the Nexus standard, for external visibility required for
the minimum development features of compliance Class 2, 3, or 4, respectively.
Additionally, compliant embedded processors shall implement either an IEEE
1149.1 standard or Nexus pin interface (or both) according to the Nexus standard
for access to the minimum development features of compliance Class 2, 3, or 4.

Figure 3-1 illustrates Nexus development interface options for a Class 2, 3, or 4
embedded processor.

Embedded
Processor

Auxiliary Output

1149.1 or Auxiliary Input

Debugger, Logic Analyzer,
Data Acquisition, Prototyping

Debugger, Run-time
Parameter Tuning

IEEE 1149.1 Protocol or Packet-based Messaging
- Development Control and Status
- Read/Write Access to internal resources

Packet-Based Messaging

Program Trace
Data Trace
Memory Substitution
Vendor-Defined

Processor independent
Supports multiple on-chip
processors

Note: The AUX IN is input only. Although the IEEE 1149.1 interface is bidirectional,
for simplicity it is illustrated as input only.

Figure 3-1—Illustration of IEEE 1149.1/Nexus Development Interface
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 11 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
For implementation of the IEEE 1149.1 interface options for Class 2, 3, and 4
embedded processors, as referenced in Figure 3-1, in addition to the IEEE
1149.1-defined pins2, only four auxiliary pins are required for compliance. The
performance classification, however, would also be minimal and may only meet
the transfer bandwidth requirements for low-end applications or for lower
compliance classifications. If faster downloads to the embedded processor are
required than is possible via the IEEE 1149.1 interface, an AUX IN should be
implemented.

The Nexus standard allows for greater performance capability in either or both of
the following ways: with a scalable auxiliary pin interface to transfer more bits on
each clock and/or a faster transfer clock to transfer more bits per unit time.
Table 3-1 shows recommendations (not requirements) for AUX type.

3.2 IEEE 1149.1 Pin Interface

The IEEE 1149.1 standard defines the required protocol for access to the
minimum development features of compliance Class 1. Additionally, the IEEE
1149.1 standard defines the required protocol for access to the minimum
development features of compliance Classes 2, 3, and 4, if the Nexus input
interface option is not selected by the developer of the embedded processor IC.

The IEEE 1149.1 interface shall provide the following capability:

• IEEE 1149.1 sequences for access to processor identification,
development control and status information according to the Nexus
standard [e.g., configuring a breakpoint via Application Programming
Interface (API)]

• IEEE 1149.1 sequences for access to user memory-mapped registers
during halt or runtime according to the Nexus standard

• IEEE 1149.1 sequences for access to development messages
according to the Nexus standard (e.g., ownership trace)

• IEEE 1149.1 sequences for access to all vendor-defined development
features (e.g., user registers when processor is halted)

2IEEE 1149.1 pins include Test Clock (TCK), Test Mode Select (TMS), Test Data Input (TDI), Test Data Output (TDO),
and Test Reset (TRST). (TRST is optional.)

Table 3-1—Recommendations for AUX Type

Compliance Class and
Port type

Number of Device Data Pins

1 2 4 8 16

Class 2 input port X X — — —

Class 2 output port X X — — —

Class 3 or 4 input port X X X — —

Class 3 or 4 output port — — X X X

Page 12 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
3.3 Nexus Auxiliary Pin Interface

The Nexus pin interface shall be implemented according to the Nexus standard
for external visibility required for the minimum development features of
compliance Classes 2, 3, and 4. Additionally, the Nexus pin interface shall be
implemented according to the Nexus standard for access to the minimum
development features of compliance Classes 2, 3, and 4, if the IEEE 1149.1
interface option is not selected by the embedded processor IC developer.

The auxiliary pin interface shall provide the following external visibility according
to the Nexus standard:3

• Trace of operating system software execution via Ownership Trace
Messaging (OTM)

• Program trace via Branch Trace Messaging (BTM)

• Data trace via Data Trace Messaging (DTM)

• Signal watchpoint and breakpoint events

• Runtime system memory substitution via Memory Substitution
Messaging (MSM)

• Other high-bandwidth information transfer (vendor-defined)

Additionally, the auxiliary pin interface shall provide the following access
according to the Nexus standard, if the IEEE 1149.1 option is not selected by the
embedded processor IC developer:

• Access to processor identification, development control, and status
information

• Access to user memory-mapped registers when halted or during runtime

• Access to all vendor-defined development features (e.g., user registers
when processor is halted)

• Provide optional access according to standard support for compliant
development tools to implement port replacement of development port

• Provide optional access according to standard ability for embedded
processor to transmit data values for acquisition by development tool

3Refer to Section 1.4 - Terms and Definitions for definitions of all new terms in the list.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 13 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard

Page 14 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
SECTION 4
Nexus Development Features

The development features are described in 4.1 - Application Programming
Interface (API) through 4.10 - Data Acquisition (Optional).

4.1 Application Programming Interface (API)

Embedded processors complying with all classes shall provide an API according
to the Nexus standard. The Nexus API is defined in a separate reference
document maintained by IEEE-ISTO 5001.

4.1.1 Overview

The Nexus API allows tool vendors to use a common “low-level semantic” API to
abstract the low-level implementation details of each Nexus-compliant embedded
processor. Because the Nexus standard does not mandate that the Nexus-
Recommended Registers (NRRs) defined in Appendix B - Recommendations
for Access to Control and Status Registers are implemented, vendors of
embedded processors are free to implement a different set of development
registers. The required feature set for each class, however, must be available
(refer to Table 2-1 and Table 2-2). The API allows embedded processors not
implementing the NRRs to be accessed in a standard manner.

The Nexus API is suitable for use by tools (debuggers, etc.), and also for the
Nexus validation suite. It is designed to capture the low-level semantics of the
Nexus features, so that it can be used to implement the bottom layers of a tool
vendor’s own target debug API.

Tool vendors support a large number of different host platforms, operating
systems, and compilation systems. Emulator vendors similarly support a multitude
of systems. The Nexus API is suitable for use in a wide variety of systems. It has
been designed to not rely on any platform-specific, real-time operating-system-
specific (RTOS-specific) or compiler-specific features.

The Nexus API abstracts the semantics of the NRRs, so that tools can perform a
common set of operations on any target, irrespective of its class or its underlying
register set. The Nexus API is divided into two sections, which are described in a
separate document maintained by IEEE-ISTO 5001:
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 15 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
• Emulator Hardware Abstraction Layer (HAL)

• Target Abstraction Layer (TAL)

4.2 Development Control and Status

Embedded processors complying with Class 1, 2, 3, or 4 shall provide the
development control and status required by the Nexus API.

4.2.1 Overview

Standardized development control and status, and standardized access to the
Nexus API, offer a significant degree of commonality. The Nexus API can be
leveraged by development tool vendors for creating standard tools with consistent
functionality across a broad range of processors. Ultimately, system developers
will benefit with more effective tools to meet their tool needs.

4.2.2 NRRs

For development control and status, embedded processors may implement the
NRRs described in Appendix B - Recommendations for Access to Control
and Status Registers or a set of vendor-defined development control and status
registers that implement the requirements specified by the Nexus API.

NRRs include the following control and status registers:

• Device Identity (DID) Register

• Client Select Control (CSC) Register

• Development Control (DC) Register

• Development Status (DS) Register

• User Base Address (UBA) Register

• Read/Write Access (RWA/RWD/RWCS) Registers

• Watchpoint Trigger (WT) Register

• Data Trace Attribute (DTSA/DTEA/DTC) Registers (minimum of two)

• Breakpoint/Watchpoint Control (BWC) Registers (minimum of two)4

4Optionally, the two BWC Registers may be combined with the two Data Trace Attribute Registers so that a total of two
registers may be simultaneously active, i.e., two BWC Registers, two Data Trace Attribute Registers, or one BWC
Register and one Data Trace Attribute Register.

Page 16 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
Development control and status registers (Nexus recommended or vendor-
defined) shall be accessed via the IEEE 1149.1 interface or the auxiliary pin
interface according to the Nexus standard. A sequence for each interface is
recommended in the Nexus standard.

4.3 Ownership Trace

Embedded processors complying with Class 2, 3, or 4 shall provide ownership
trace visibility according to the Nexus standard.

4.3.1 Overview

Ownership trace provides a macroscopic view, such as task flow reconstruction,
when debugging software written in a high-level (or object-oriented) language. It
offers the highest level of abstraction for tracking operating system software
execution. Ownership trace is especially useful when the developer is not
interested in debugging at lower levels.

Ownership trace is especially important for embedded processors with a memory
management unit, in which all processes can use the same logical program and
data spaces. Ownership trace offers development tools a mechanism to decipher
which set of symbolics and sources are associated for lower levels of visibility and
debugging.

4.3.2 Ownership Trace Messaging (OTM)

Ownership trace information is transmitted out the AUX using OTM. OTM
facilitates ownership trace by providing visibility of which process identity (ID) or
operating system task is activated. An Ownership Trace Message is transmitted to
indicate when a new process/task is activated, allowing development tools to
trace ownership flow. Additionally, for embedded processors that implement
virtual addressing or address translation, an Ownership Trace Message is also
transmitted periodically during runtime at a minimum frequency of every 256
Program/Data Trace Messages.

The Nexus standard defines an OTM Register whose user memory map location
is accessed via the IEEE 1149.1 or auxiliary pin interfaces. The OTM Register is
to be updated as determined by the operating system software to provide task/
process ID information. When new information is updated in the register by the
embedded processor, the information is transmitted out via the AUX. Refer to
B.5.5 - User Base Address (UBA) Register for more information.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 17 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
4.4 Program Trace

Embedded processors complying with Class 2, 3, or 4 shall provide

1. Program trace visibility via the AUX according to the Nexus standard

2. Capability to detect and signal program trace overrun errors according
to the Nexus standard, if the condition occurs during application of the
embedded processor

– A program trace error shall be detected and transmitted out the AUX
according to the Nexus standard when any Program Trace Message
is lost and not signaled via the AUX.

– Embedded processors complying with Class 4 shall provide the
capability to delay the processor and avoid overruns.

3. Capability to synchronize program trace according to the Nexus
standard

4.4.1 Overview

The Program Trace feature defines a standard protocol for program trace visibility
that is processor independent. Additionally, the number of program trace signals
that must be visible external to the device is significantly reduced over
conventional methods. The benefit is standard logic analysis tools with consistent
functionality.

4.4.2 Branch Trace Messaging (BTM)

The Program Trace feature implements a Program Flow Change Model in which
program trace is synchronized at each program flow discontinuity. A program flow
discontinuity occurs at taken branches and exceptions. The messages generated
using this model are referred to as Branch Trace Messages.

Development tools can interpolate what transpires between program flow
discontinuities by correlating information from Branch Trace Messages and static
source or object code files. Self-modifying code cannot be traced with the
Program Flow Change Model because the source code is not static.

There are two types of Branch Trace Messages: traditional and history. History
messages are generally used for increased bandwidth requirements of higher
performing processors or by processors that incorporate predicated instructions.
For Class 2 (and higher) embedded processors, it is optional which type of
program trace messages are used.

Page 18 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
4.4.2.1 BTM Using Traditional Messages

Traditional BTM facilitates program trace by providing several key types of
visibility. The visibility comprises the following:

• Messaging for taken direct branches includes the number of sequential
instruction units that were executed since the last taken branch or
exception and an indication of which client (if more than one are present
on the embedded processor) took the branch. Direct (or indirect)
branches that are not taken are included in the count of sequential
instruction units. Direct branches that are taken are not included in the
count of sequential instruction units.

• Messaging for taken indirect branches and exceptions includes the
number of sequential instruction units that were executed since the last
taken branch or exception, the unique portion of the branch target
address or exception vector address, and an indication of which client (if
more than one are present on the embedded processor) took the
branch. Indirect branches that are not taken are included in the count of
sequential instruction units. Indirect branches that are taken are not
included in the count of sequential instruction units.

4.4.2.2 BTM Using Branch History Messages

BTM using Branch History Messages also facilitates program trace by providing
several key types of visibility. The visibility comprises the following:

• Messaging for taken indirect branches and exceptions includes the
number of sequential instruction units that were executed since the last
taken branch, exception, or predicate instruction; the unique portion of
the branch target address or exception vector address; an indication of
which client (if more than one are present on the embedded processor)
took the branch; and a branch/predicate instruction history field. Indirect
branches that are not taken are included in the count of sequential
instruction units. Indirect branches that are taken are not included in the
count of sequential instruction units.

• There is no messaging for direct branch events or predicated
instructions using history messages. Each bit is logged in a history
buffer where a value of 1 indicates taken and a value of 0 indicates not
taken. The history buffer is transmitted in the history field of Indirect
Branch Messages. Refer to 5.3.7 - Program Trace - Indirect Branch
with Sync Message for detail on Branch History Messages.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 19 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
For both types of messages, the information regarding the number of sequential
instruction units executed since the last taken branch is used to facilitate the
following:

1. Trace which direct branch is taken

2. Detect which instruction may have caused an exception

The unique portion of the indirect branch target address transmitted out the AUX
is relative to a prior address transmitted out the AUX.

BTM can also be triggered during runtime at the occurrence of watchpoint.

4.4.3 Program Trace Overrun Errors

The overrun Error Message is to be used by development tools to notify the
developer that program trace information has been lost. A BTM overrun error
occurs when the number of messages to be transmitted via the AUX in a given
time period exceeds the bandwidth capacity of the AUX.

4.4.4 Program Trace Synchronization

Due to the nature of some processor architectures, such as reduced instruction
set computer (RISC) processors, some application programs may comprise a
significant number of direct branch instructions and very few indirect branch
instructions.

Because BTM for taken direct branches does not provide the target address,
program trace for these application programs must be accomplished in a relative
manner (possibly without branch target address information). Synchronization
messages ensure that development tools fully synchronize with the program flow
regularly.

A Program Trace Message for synchronization shall be transmitted via the AUX
by the embedded processor for the following conditions:

• Initial Program Trace Message upon exit of system reset, exit of a
power-down state, or exit of a debug mode

• Periodically during runtime at a minimum frequency of every 256
Program Trace Messages

• When program trace is enabled during normal execution of the
embedded processor

• Upon assertion of an Event-In (EVTI) pin

Page 20 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
• Program trace overrun error

• Upon overflow of the sequential instruction unit counter

• Optionally upon occurrence of a watchpoint

NOTE
A synchronization message, displayed as an individual message or as
part of another message, always includes an indication of which client (if
more than one are present on the embedded processor) is being
synchronized and the full address of a recently executed instruction.

4.5 Data Trace

Embedded processors complying with Class 3 or 4 shall provide

1. Data trace for write visibility via the AUX according to the Nexus
standard

– Embedded processors complying with Class 3 or 4 may optionally
provide data trace for read visibility via the AUX according to the
Nexus standard.

2. Capability to detect and signal data trace overrun errors according to the
Nexus standard, if the condition occurs during application of the
embedded processor

– A data trace error shall be detected and transmitted out the AUX
according to the Nexus standard when any Data Trace Message is
lost and not signaled via the AUX.

– Embedded processors complying with Class 4 shall provide the
capability to delay the processor and avoid overruns.

3. Capability to synchronize data trace according to the Nexus standard

4.5.1 Overview

The Data Trace feature defines a standard protocol for data trace visibility of
accesses to vendor-defined internal peripheral and memory locations. Practical
limitations exist that constrain the number of locations that may be traced via the
AUX. In application use, limiting the number of traced locations is necessary for
effective use of data trace. Additionally, excluding processor stack area from data
trace is beneficial.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 21 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
4.5.2 Data Trace Messaging (DTM)

The Data Trace feature provides a minimum of two data trace windows that
include the following qualifiers:

• Start and end user address for data trace

• Trace reads, writes, or both within the start/end address range

Data accesses are monitored, and qualifying data accesses are then transmitted
out the AUX using Data Trace Messages. DTM facilitates data trace by providing
several key types of visibility. The messaging for data trace includes the unique
portion of the data address and the data value. The unique portion of the data
address transmitted out the AUX is relative to the prior data trace address
transmitted out the AUX.

4.5.3 Data Trace Overrun Errors

The overrun error message is to be used by development tools to notify the
developer that data trace information has been lost. A DTM overrun error occurs
when the number of messages to be transmitted via the AUX in a given time
period exceeds the bandwidth capacity of the AUX.

4.5.4 Data Trace Synchronization

The output bandwidth requirements for the AUX are minimized for data trace by
messaging out only the unique portion of the data address (instead of the
complete address). Consequently a data trace address is reconstructed relative to
each prior message.

Synchronization messages provide the full address and ensure that development
tools fully synchronize with the data trace regularly. Synchronization messages
provide a reference address for subsequent Data Trace Messages, in which only
the unique portion of the data trace address is transmitted.

A Data Trace Message with Synchronization shall be transmitted out the AUX by
the embedded processor for the following conditions:

• Initial Data Trace Message upon exit of system reset, exit of a power-
down state, or exit of a debug mode

• Periodically during runtime at a minimum frequency of every 256 Data
Trace Messages

• When data trace is enabled during normal execution of the embedded
processor

Page 22 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
• Upon assertion of an EVTI pin

• Optionally upon occurrence of a watchpoint

• Data trace overrun error

NOTE
Synchronization information includes an indication of which client (if
more than one are present on the device) is being synchronized and the
full address for a recent data trace.

4.6 Read/Write Access

Embedded processors complying with Class 3 or 4 shall provide read/write
access to user memory-mapped resources according to the Nexus standard,
either via the IEEE 1149.1 interface or the auxiliary pin interface. The capability to
perform read/write access shall be provided when the processor is halted or
running.

4.6.1 Overview

The Read/Write Access feature supports runtime development visibility needed
for real-time embedded applications. This feature also supports program tuning
needs of automotive powertrain and disk drive applications.

4.6.2 Read/Write Access Messaging

The Read/Write Access feature provides DMA-like access to user memory-
mapped resources when the client is halted or during runtime. One of three
options may be used to implement this feature on the embedded processor:

• Read/Write Access using NRR Access Messages

• Read/Write Access using Memory Access Messages

• Read/Write Access using the IEEE 1149.1 port

4.6.2.1 Read/Write Access Using NRR Access Messages

For target processors that implement the NRRs defined in Appendix B -
Recommendations for Access to Control and Status Registers, Public
Messages are defined in Section 5 - Nexus Public Messages and allow a tool to
read or write memory locations in the target processor’s internal address space
via the AUX.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 23 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
4.6.2.2 Read/Write Access Using Memory Access Messages

Public Messages are defined in Section 5 - Nexus Public Messages, allow a
tool to read or write memory-mapped locations in the target processor’s internal
address space, and allow a target to read or write memory locations in the tool via
the AUX. This type of read/write access is used in the following circumstances:

• By a tool that implements vendor-defined development control and
status registers (instead of the NRRs as defined in Appendix B -
Recommendations for Access to Control and Status Registers).

• By a target that implements memory substitution in which code and/or
data that are normally fetched from target memory are instead fetched
from tool memory. This function is started by a target processor
watchpoint match and is ended by the tool. Refer to 4.7 - Memory
Substitution for detail on the Memory Substitution feature.

• By a target that allocates a fixed portion of its internal memory map to
provide AUX access. Processor reads or writes to this address range
result in Read/Write Messages being issued to access memory that
exists within the tool. As an example, a target’s debug exception handler
program may exist only within the tool and be fetched from the tool each
time a debug exception occurs.

4.6.2.3 Read/Write Access Using the IEEE 1149.1 Port

Read/Write Access through the IEEE 1149.1 port can utilize the NRRs or use
vendor-defined registers. In either case, Public Messages defined in Section 5 -
Nexus Public Messages are not used. Refer to B.3 - Access with the IEEE
1149.1 Interface for detail on how the IEEE 1149.1 port is used to access the
NRRs.

4.7 Memory Substitution

Embedded processors complying with Class 4 shall provide the capability to
activate user memory substitution via the AUX according to the Nexus standard.
Memory substitution shall be capable of being activated upon exit of reset. A
Class 4 processor optionally may also support memory substitution activated
upon the occurrence of a watchpoint or upon the occurrence of a data access or
an instruction fetch from a vendor-defined address range. If supported, these
optional capabilities must be implemented according to the Nexus standard.

Page 24 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
4.7.1 Overview

Memory substitution facilitates the software development process with program
execution via the AUX upon exit of reset. Instructions are fetched and data are
read from the development tool. Providing this capability via the AUX eliminates
the need for a second development port dedicated to the software development
process. Additionally, single-stepping with instruction and data fetches via the
AUX can be used for a non-real-time, read-only memory (ROM) monitor.

Optionally, the feature can be activated upon the occurrence of a watchpoint. This
can support runtime patching for portions of internal ROM, with the patch provided
via the AUX. ROM patching during runtime, however, is limited by capability
factors of the complying embedded processor. Some factors that may limit the
embedded processor are

• The number of watchpoints implemented (one data value patch or one
instruction sequence patch per watchpoint)

• The port size and clock rate of the auxiliary pin interface implemented

• The portion of AUX bandwidth allocated for this feature if other
messaging activities are also enabled at the same time

Another option is to activate memory substitution upon the occurrence of a data
access or an instruction fetch from a vendor-defined address range. For a full
memory emulation capability, data reads, data writes, and instruction fetches
continue via the AUX until the address of a data access or instruction fetch falls
outside a specified address range. The address range is vendor-defined and not
typically programmable.

Memory substitution is not intended to be used for tuning parameters during
runtime, such as is required for development of automotive powertrain and disk
drive applications. There may be other applications, however, that may be able to
use this feature during runtime.

4.7.2 Memory Substitution Messaging (MSM)

A Class 4 embedded processor shall be capable of the following three types of
memory substitution operations:

• Reading data and fetching instructions via the AUX (both data and
instructions substituted by tool)

• Only reading data via the AUX (only data operands substituted by tool)

• Only fetching instructions via the AUX (only instruction operands
substituted by tool)
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 25 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
NOTE
Class 4 embedded processors are not required to write data via the
AUX.

In memory substitution, the processor will make all qualifying memory-mapped
fetches (data, instructions, or both) via the AUX, in a single-step or normal
processor mode. Operands that are not enabled for memory substitution shall be
accessed normally from user memory. Qualifying memory-mapped fetches are
selected by configuring control and status information via the IEEE 1149.1 port or
the AUX.

A Class 4 embedded processor shall be capable of activating memory substitution
upon exit from reset and optionally capable of activating it upon the occurrence of
a watchpoint or upon the occurrence of a data access or an instruction fetch from
a vendor-defined address range.

The Memory Substitution feature can be activated upon exit from reset by
configuring control and status information via the IEEE 1149.1 port or the AUX. It
can be activated on a watchpoint occurrence by configuring watchpoint trigger
information via the IEEE 1149.1 port or the AUX. It can be activated on
occurrence of a data access or an instruction fetch from a vendor-defined address
range. No configuration is required for the latter.

When memory substitution is activated upon exit of reset or a watchpoint
occurrence, the processor will make all qualifying memory-mapped fetches via the
AUX, until the development tool disables memory substitution. When memory
substitution is activated upon the occurrence of a data access or an instruction
fetch from a vendor-defined address range, the processor will make all qualifying
memory-mapped fetches via the AUX until the address of a data access or
instruction fetch falls outside the vendor-defined address range. Once memory
substitution is disabled, user memory shall be accessed normally.

MSM facilitates memory substitution by providing messages for access requests
and transfers via the AUX. These comprise the following:

• Messaging for a memory substitution access request provided from the
processor to an external development tool containing access attributes
such as instruction/data, size, and the memory-mapped address. The
full address is transmitted for each memory substitution access request.

• Messaging for a memory substitution transfer provided from the external
development tool to a processor containing the instruction or data
specified by access attributes.

Page 26 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
• Messaging for the last memory substitution transfer provided from the
external development tool to a processor containing the last instruction
or data specified by access attributes and containing a disable
command for MSM. Subsequent memory-mapped accesses will be
accessed normally from the internal memory-mapped resource
designated by the access attributes.

For patching a ROM instruction sequence, the last memory substitution transfer
may consist of a direct branch to the address following the patched instruction
sequence.

4.8 Breakpoints/Watchpoints

Embedded processors complying with Class 1, 2, 3, or 4 shall provide a minimum
of two instruction/data hardware breakpoints.5 Embedded processors complying
with Class 2, 3, or 4 shall provide, according to the Nexus standard, the capability
to message via the AUX any occurrence of a watchpoint.

4.8.1 Overview

The Breakpoint and Watchpoint features facilitate the software development
process by allowing the developer to halt at a specific processor state or to signal
a specific processor state. If there is an internal ROM or if a breakpoint or trap
instruction does not exist in the vendor’s architecture, then these features become
a valuable tool for development.

4.8.2 Breakpoint/Watchpoint Messaging

Breakpoints and watchpoints comprise the following:

• Data breakpoint—processor is halted at an appropriate instruction
boundary after a trigger is set at a data valid time. The trigger is set
when the data address and/or data value matches a pre-selected
address and/or value.

• Instruction breakpoint—processor is halted when all previous
instructions are retired and just prior to when any architectural state is
changed by the instruction associated with a pre-selected address.

• Watchpoint—a data or instruction breakpoint that does not cause the
processor to halt. A Watchpoint Match Message via the AUX is used to
signal that the condition occurred.

5Optionally, the two BWC Registers may be combined with the two Data Trace Attribute Registers so that a total of two
registers may be simultaneously active, i.e., two BWC Registers, two Data Trace Attribute Registers, or one BWC
Register and one Data Trace Attribute Register.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 27 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
4.9 Port Replacement and Port Sharing (Optional)

Embedded processors complying with Class 2, 3, or 4 may optionally implement
support on the auxiliary pins according to the Nexus standard for LSIO port
replacement. Embedded processors complying with Class 2, 3, or 4 may
optionally share AUX pins according to the Nexus standard with a second HSIO
port.

4.9.1 Overview

In embedded processor applications, the use of every pin is scrutinized by
developers of embedded processors. Inevitably there are never enough pins
available on the embedded processor to meet both the application and
development needs. Pins that are designated for product development are often
reduced or removed to make way for other pin functions directly used in the
application. Port replacement and sharing support is intended to solve this
dilemma by using common embedded processor ports for a secondary
development support function.

4.9.2 Port Replacement for Low-Speed I/O (LSIO) Pins

Port replacement provides a mechanism for LSIO pin functions to be replaced
using messages via the AUX. The standard messages between the development
tool and AUX provide the necessary information for the development tool to
replace the LSIO port (with additional delay).

The mechanism is enabled in a plug-and-play manner. When a development tool
is connected to the AUX, it enables the AUX with Port Replacement Messages.
When no development tool is connected, the port functions as only an LSIO port.

Up to 16 bits of LSIO port replacement are allowed with the standard Port
Replacement Messages transmitted via the AUX, as shown in Figure 4-1. The
standard messages transmitted between the development tool and embedded
processor provide the necessary information for the development tool to replace
the LSIO port (with additional delay). The specific format of the Port Replacement
Messages is outlined in Section 5 - Nexus Public Messages.

Page 28 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
.

Most messages transmitted in a typical application will contain development
information. Upon occurrence of an LSIO state change, however, a Port
Replacement Message will be transmitted. Port Replacement Messages will be
transmitted either by the embedded processor to the tool (messages containing
information for low-speed output pins) or by the tool to the embedded processor
(messages containing information for low-speed input pins).

Port Replacement Messages from the embedded processor will contain two
essential packets: one packet indicating the direction of each LSIO pin and
another indicating the state of all LSIO pins. Port Replacement Messages from
the tool will contain one essential packet indicating the state of all LSIO pins. This
information will be used by the embedded processor and tool to maintain the
correct state and direction for all LSIO pins.

Note that if the development tool is not connected to perform the port replacement
function, a special connector should be connected so that the LSIO signals are
connected to the LSIO devices on the target board. For production boards that do
not require the port replacement function, no connector is required for signals that
are connected directly by board traces.

The development tool shall implement the following rules to assure proper port
replacement:

• Prior to receiving the first Port Replacement Message after the
embedded processor port has been reset, all replacement pins on the
tool should default to input.

• Prior to receiving the first Port Replacement Message after the
embedded processor port has been reset, the tool should not generate
Port Replacement Messages to the embedded processor.

Embedded Processor

LSIO/Auxiliary

PCB

LSIO

To LSIO
Devices

Development
Tool

Nexus

Port
Cntl

Figure 4-1—Port Replacement for LSIO Pins
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 29 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
• When the processor writes to the LSIO port registers, a Port
Replacement Message will be transmitted to the tool. The tool then
drives the pins configured as outputs to their programmed states.

• Whenever any pin configured as an input changes, the tool transmits a
Port Replacement Message to the embedded processor for update of
the state internally (enabled interrupt may be generated).

4.9.3 Port Replacement for High-Speed I/O (HSIO) Pins (Port Sharing)

For embedded processors that incorporate HSIO pins, a slightly different
technique is provided for simultaneously using both a primary pin function, such
as an external bus port, and a secondary pin function, such as Nexus
development pins. For example, an L2 cache bus function and the AUX OUT
function may utilize the same pins. This procedure is also referred to as port
sharing.

Most bus traffic in a typical application will be due to external bus cycles on the
shared pins for accessing system resources. Due to the high-speed nature of the
HSIO external bus port, only the data-out portion of the Nexus port can be
simultaneously shared with the primary function, because the Nexus data-out
signals have the most stringent bandwidth requirements. During external bus
cycles, AUX control signals are negated and the development tool ignores the
external bus information. Upon occurrence of a condition that generates
development information (e.g., BTM and DTM), a corresponding message is sent
out via the shared pins and captured by the tool.

This solution provides a tremendous advantage in reducing the total number of
actual development support pins. Refer to Figure 4-2 for an illustration.

Figure 4-2—Port Replacement for HSIO Pins (Port Sharing)

Embedded
Processor

Nexus Control

PCB

HSIO

To HSIO
Devices

Development
Tool

Nexus (Data Out)

Page 30 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
4.10 Data Acquisition (Optional)

Embedded processors complying with Class 2, 3, or 4 may optionally implement
support for data acquisition by the development tool from the embedded
processor, via the AUX, according to the Nexus standard.

4.10.1 Overview

The Data Acquisition feature provides a mechanism for visibility of intermediate
variables calculated by the embedded processor. An application includes time-
critical parameters passed to an external coprocessor for rapid prototyping. The
embedded processor is required to queue up data for acquisition by the
development tool.

4.10.2 Data Acquisition Messaging (DQM)

DQM provides the capability to message, on the AUX, internal data related to one
another. Because of construction, DQM provides a more efficiently packed
message than DTM.

DQM facilitates data acquisition by providing several key types of visibility: display
data ID tag (to specify which group of data) and all data values. The display data
ID tag is typically a reference number to identify the data, e.g., “3” may represent
time-critical parameters passed to an external coprocessor for rapid prototyping.

As mentioned above, the embedded processor must queue up Data Acquisition
Messages. In the Nexus standard, a user memory-mapped interface and protocol
are recommended (not required) for the embedded processor to queue up Data
Acquisition Messages. The user memory-mapped locations are configured via the
IEEE 1149.1 or auxiliary pin interface. The recommended protocol consists of
writing to a designated user memory-mapped location to generate a Data
Acquisition Message with a specific display data ID tag.

4.11 Timestamping (Optional)

Embedded processors complying with Class 2, 3, or 4 may optionally implement
support for timestamping via the AUX or through vendor-defined pins.

4.11.1 Overview

Because messages defined in the Nexus standard are queued up within the
embedded processor before being transmitted to the external development tool,
the exact time that a particular event (i.e., indirect branch or data write) occurred
is lost. The exact event time can be especially important for software quality
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 31 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
assurance (SQA) tools such as performance analysis and code coverage
measurement tools.

Two different mechanisms may be optionally implemented to meet compliance in
accordance with the Nexus standard:

1. Timestamping using an optional field within each AUX OUT message

2. Timestamping using optional pins

4.11.2 Timestamping via AUX

For each message defined in Section 5 - Nexus Public Messages, a
timestamping field may be added to the end of the message that indicates to the
tool the time the specific message occurred. This value can be either an absolute
timestamp generated within the embedded processor or a timestamp relative to
when the last message entered the internal first-in, first-out (FIFO) buffer.

The absolute timestamp entails significant bandwidth overhead. The relative
timestamp requires the development tool to calculate timestamp values from the
time the first trace message enters the FIFO buffer. The method chosen for
timestamping through the AUX is vendor-defined.

4.11.3 Timestamping via pins

To avoid the bandwidth impact of adding a field to each message, an alternative
method for timestamping entails using either vendor-defined pins or using a
secondary function on the optional EVTO pin. Each time a message enters the
internal FIFO buffer, the output signal asserts for the period of one clock cycle
(see Note). The number of pins utilized and the specific functionality of each pin
are vendor-defined.

NOTE
If vendor-defined pins are used for timestamping, the frequency of the
clock output is also vendor-defined. If EVTO is used, the signal will
assert for one cycle of Message Clockout (MCKO) for each
timestamped event.

Page 32 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
SECTION 5
Nexus Public Messages

The AUX provides a high-speed communication link between the tool and a target
processor. All communication over this link uses messages in one or both
directions.

The format and meaning of certain messages, called Public Messages, are
defined by this specification. Other messages can be vendor defined and defined
by the target processor vendor. Tools require enhanced capability to be able to
support Vendor-Defined Messages.

All messages start with a 6-bit transfer code (TCODE), which uniquely defines the
type of message. Fifty-six TCODEs (values 0 to 55) indicate that the message is a
Public Message defined by the Nexus standard or reserved for future definition by
the Nexus standard. Seven TCODEs (values 56 to 62) indicate that the message
is a Vendor-Defined Message. One TCODE (value 63) indicates that the message
is a Vendor-Defined Message, and then a second level code designated by the
vendor further identifies the specific message.

In addition to being transferred over the AUX, Public Messages can also be
transferred via an IEEE 1149.1 port using the method described in Section 8 -
IEEE 1149.1 Message Protocol.

5.1 Compliance Requirements for Public Messages

Embedded processors complying with Class 2, 3, or 4 shall implement messaging
via the AUX according to the Nexus standard. Embedded processors complying
with Class 1 may optionally implement messaging via the IEEE 1149.1 interface.

Embedded processors shall implement the minimum Public Messages as
required per the compliance class. Table 5-1 lists the minimum required Public
Messages per compliance class. Embedded processors may optionally
implement Vendor-Defined Messages.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 33 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
Table 5-1—Minimum Required Public Messages

Required Feature Minimum Required Public Messages Class 2 Class 3 Class 4

Device Identification - Device ID Messagea

a. For embedded processors that do not implement an IEEE 1149.1-compliant IDCODE

X X X

Task/Process ID - Ownership Trace Message X X X

Watchpoint Indication - Watchpoint Match Message X X X

Error - Error Message X X X

Program Trace

Program Trace using traditional branch messages:
- Program Trace - Direct Branch Message
- Program Trace - Indirect Branch Message
- Program Trace - Synchronization Messageb

b. The Direct Branch with Sync Message and/or Indirect Branch with Sync Message may be implemented instead of
the Synchronization Message.

X X XOR

Program Trace using branch history messages:
- Program Trace - Indirect Branch History Message
- Program Trace - Synchronization Messagec

- Program Trace - Resource Full Message

c. The Indirect Branch History with Sync Message may be implemented instead of the Synchronization Message.

Data Trace
- Data Trace - Data Write Message
- Data Trace - Data Write with Sync Message

-- X X

Read/Write Access

Read/Write Access using registers defined in
Appendix B - Recommendations for Access to Con-
trol and Status Registers:
- NRR Access - Target Ready Message

- NRR Access - Read Register Message
- NRR Access - Write Register Message
- NRR Access - Read/Write Response Message

-- X X

OR

Read/Write Access via IEEE 1149.1 port:
- No Public Messages Required (see Section 8.3 - Read/
Write Access via the IEEE 1149.1 Port)

OR

Read/Write Access using vendor-defined registers:
- Memory Access - Read Target Message
- Memory Access - Write Target Message
- Memory Access - Read Next Target Data Message
- Memory Access - Write Next Target Data Message
- Memory Access - Target Response Message

Memory Substitution
- Memory Access - Read Tool Message
- Memory Access - Read Next Tool Data Message
- Memory Access - Tool Response Message

-- -- X

Page 34 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
5.2 Definitions and Terminology

The following terms relate to Public Messages:

Message: Each message starts with a 6-bit TCODE, which defines the type of
information carried in the message and its format. The TCODE packet length for
all Public Messages must be 6 bits. When messages are transferred via the AUX,
message start/end (MSE) signaling protocol, described in Section 7 - AUX
Message Protocol, defines the start and the end of each message.

Transmission Order: Messages are transmitted LSB(s) first. Additionally,
Program/Data Trace Messages are transmitted in a temporal order so that the
transmission of messages should correlate as closely as possible with the
temporal occurrence of activity on the embedded processor.

Packet: A packet is a distinct piece of the information contained within a
message, and messages may contain one or more packets. A common
alternative term for a packet is a field. When messages are transferred via the
AUX, MSE signaling protocol defines the end of each variable-length packet.

Port Boundary: A port boundary relates the size of a packet to the width of the
AUX IN or AUX OUT.

Variable: Specifying that a packet is variable-size means that the message must
contain the packet, but that the packet’s size may vary from a minimum of 1 bit.
When messages are transferred via the AUX, variable-size packets must end on a
port boundary. If necessary, they must zero-fill bit positions beyond the highest
order bit of the variable data. Because variable-size packets may be of different
lengths in messages of the same type, the tool must use the MSE signaling
protocol to determine the end of packet boundaries.

Vendor-Fixed: The term vendor-fixed is used to indicate allowances in the Nexus
standard to match characteristics of a vendor’s device. Vendor-fixed packets may
be of zero length (not implemented). For a tool to interpret message content, it
must determine from the device ID (or IEEE 1149.1-defined IDCODE) whether
vendor-fixed packets exist in each type of message.

Some vendor-fixed packets have their lengths fixed by the Nexus specification.
Other vendor-fixed packets are target processor dependent and have a fixed size
determined by the processor vendor.

Vendor-Variable: The term vendor-variable is used to indicate allowances in the
Nexus standard to match characteristics of a vendor’s device. Vendor-variable
packets may be of zero length (not implemented). For a tool to interpret message
content, it must determine from the device ID (or IEEE 1149.1-defined IDCODE)
whether vendor-variable packets exist in each type of message. When messages
are transferred via the AUX, vendor-variable packets must end on a port
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 35 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
boundary. If necessary, they must zero-fill bit positions beyond the highest order
bit of the variable data. Because variable-size packets may be of different lengths
in messages of the same type, the tool must use the MSE signaling protocol to
determine the end of packet boundaries.

These vendor-variable packets are target processor dependent and have a
variable size determined by the processor vendor. These packets are normally
reserved for the end of a Public Message where the vendor may implement
additional fields.

For messages that have multiple vendor-variable packets, either dynamic
allocation of the field (zero value in some cases, nonzero value in others) must be
controlled by the external development tool, or a vendor-defined mechanism must
be created to inform the development tool when the allocation of these fields is
changed internally by the target.

Sync and Non-Sync Trace Messages: Program/Data Trace Messages fall into
two broad categories—non-sync (or normal) versions and sync versions. The
main difference between the two categories is that sync versions include full
addresses whereas non-sync versions contain addresses that are relative to a
previous trace message.

Next Address Generation: To minimize the size of trace messages, the address
packets in the non-sync versions of all trace messages contain a compressed
address. This compressed address, called the unique portion of the address, is
relative to the address associated with a previous trace message of the same
type. Thus, Program Trace Messages contain an address that is relative to the
previous Program Trace Message; Data Trace Messages contain an address that
is relative to the previous Data Trace Message.

The target processor computes the relative address by exclusive-OR-ing the
current program or data address with the full address associated with the previous
Program Trace Message or Data Trace Message (see Figure 5-1).

Number of Messages Cancelled: Several messages for program and data trace
synchronization (Direct Branch with Sync Message, Indirect Branch with Sync
Message, Indirect Branch History with Sync Message, Data Write with Sync
Message, Data Read with Sync Message) contain a packet for the number of
messages cancelled. There are three vendor-defined interpretations of this field:

1. For embedded processors that transmit only valid messages, this field
can be omitted.

2. For embedded processors that do not queue up Program/Data Trace
Messages as they become backlogged, but can truncate the current
message as it is being transmitted to send out a fresher message, this
field will have a value of 1 if the previous message has been truncated.

Page 36 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
3. For embedded processors that send out preliminary Program Trace
Messages (e.g., speculative execution) and later correct the trace
information by cancelling fully transmitted messages, this field will notify
the tool of the number of fully transmitted program (or data) messages to
be cancelled.

Periodic Message Counter: Because addresses contained in non-sync
Program/Data Trace Messages are relative, the loss or corruption of a trace
message means that the tool will be unable to correctly recreate addresses
following the corruption or loss. To minimize the effect of any such loss or
corruption of a trace message, the target processor must send a sync version at
least every 256 trace messages.

To provide this function, the target processor must maintain two periodic message
counters, one for counting normal Program Trace Messages and the other for
counting normal Data Trace Messages.

Example of how the target processor generates the address to send in a trace
message:

Previous absolute address (A1) = 0x003FC01,
Absolute address associated with new trace occurrence (A2) = 0x0003F365

A1 = 0000 0000 0000 0011 1111 1100 0000 0001

A2 = 0000 0000 0000 0011 1111 0011 0110 0101

A1⊕ A2 = 0000 0000 0000 0000 0000 1111 0110 0100

The unique portion of the address (M1), sent in the message (high-order
zeros are suppressed):

M1 = 1111 0110 0100

Example of how the tool recreates the address based on its previously calcu-
lated address and the address contained in the trace message:

Previously calculated address (A1) = 0x003FC01,
Address in message (M1) = 0xF64

A1 = 0000 0000 0000 0011 1111 1100 0000 0001

M1 = 0000 0000 0000 0000 0000 1111 0110 0100

A1⊕ M1 = 0000 0000 0000 0011 1111 0011 0110 0101

Address recreated by the tool = 0x0003F365

Figure 5-1—Next Address Generation Example
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 37 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
Instruction Address Threads and Data Address Threads: On embedded
processors that implement data and program trace, there will be an address
thread for each type of trace: the data address thread and the instruction address
thread. Messages containing a data address packet will be encoded and
compressed using the data address most recently transmitted, thus creating a
data address thread. Likewise, messages containing an instruction address
packet will be encoded and compressed using the instruction address most
recently transmitted, thus creating an instruction address thread.

Source of Message Transmission (SRC field): All of the Public Messages
contain a vendor-fixed packet that may be used to identify which client was the
source of the message transmission. In embedded processors that consist of only
a single client, this packet need not be transmitted. For embedded processors that
consist of multiple clients, this packet must be transmitted as part of the message
to identify the source of the message transmission.

Branch History (HIST field): For Indirect Branch History Messages, the branch
history packet provides a history of direct branch executions used for re-
constructing program flow. This packet is implemented as a left-shifting shift
register. The register is always pre-loaded with a value of 1. This bit acts as a stop
bit so that the development tools can determine which bit is the end of the history
information. This pre-loaded bit itself is not part of the history, but is transmitted
with the packet.

A value of 1 is shifted into the history buffer on a taken branch (conditional or
unconditional) and on any instruction whose predicate condition resolved as true.
A value of 0 is shifted into the history buffer on any instruction whose predicate
condition executed as false as well as on branches not taken. This includes
indirect as well as direct branches not taken.

Instruction Units (I-CNT field): Most Program Trace Messages have a packet
that indicates the number of instruction units executed since the last taken branch.
In target architectures in which all instructions are the same size, this packet
contains the actual number of instructions executed since the last taken branch.

If instructions are of variable size, then the number reported is the number of
instruction units. The instruction unit represents the number of bytes or words
associated with the highest common denominator of the variable instruction sizes.

Page 38 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
5.3 Detailed Description of Public Messages

In this subsection, Public Messages are grouped according to their function. The
complete list of Nexus Public Messages is listed in Table 5-2.

Table 5-2—Nexus Public Messages

Message Name TCODE Value Direction

Debug Status 0 From target

Device ID 1 From target

Ownership Trace 2 From target

Program Trace - Direct Branch 3 From target

Program Trace - Indirect Branch 4 From target

Data Trace - Data Write 5 From target

Data Trace - Data Read 6 From target

Data Acquisition 7 From target

Error 8 From target

Program Trace - Synchronization 9 From target

Program Trace - Correction 10 From target

Program Trace - Direct Branch with Sync 11 From target

Program Trace - Indirect Branch with Sync 12 From target

Data Trace - Data Write with Sync 13 From target

Data Trace - Data Read with Sync 14 From target

Watchpoint Match 15 From target

NRR Access - Target Ready 16 Both ways

NRR Access - Read Register 17 From tool

NRR Access - Write Register 18 From tool

NRR Access - Read/Write Response 19 Both ways

Port Replacement - Output 20 From target

Port Replacement - Input 21 From tool

Memory Access - Read Target/Tool 22 Both ways

Memory Access - Write Target/Tool 23 Both ways

Memory Access - Read Next Target/Tool Data 24 Both ways

Memory Access - Write Next Target/Tool Data 25 Both ways

Memory Access - Target/Tool Response 26 Both ways

Program Trace - Resource Full 27 From target

Program Trace - Indirect Branch History 28 From target

Program Trace - Indirect Branch History with Sync 29 From target

Program Trace - Repeat Branch 30 From target
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 39 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
In the Public Message descriptions in 5.3.1 - Debug Status Message through
5.3.33 - Memory Access - Tool Response Message, each description table lists
the MSBs (transmitted last) at the top of the table and the LSBs (transmitted first)
at the bottom of the table (see Table 5-3 through Table 5-40).

5.3.1 Debug Status Message

Message Description: The Debug Status Message is output by the target
whenever there is a change of state of any of the following:

• Entry to the debug exception handler

• Exit from the debug exception handler

• Change in power-managed state of the processor

• Detection of a breakpoint

In addition to having the target processor send a Debug Status Message
whenever the debug status changes, the tool is able to request the current debug
status at any time. For target processors that implement the NRRs described in
Appendix B - Recommendations for Access to Control and Status
Registers, the tool requests the current debug status by sending a Read Register
Message containing the Development Status opcode. For target processors that
implement device-specific registers, the API knows which vendor register(s) to
read to obtain debug status.

Program Trace - Repeat Instruction 31 From target

Program Trace - Repeat Instruction with Sync 32 From target

Program Trace - Correlation 33 From target

Reserved 34–55 Both ways

Vendor-Defined Message 56–62 Both ways

Vendor-Defined Extension Message 63 (0x3F) Both ways

Table 5-2—Nexus Public Messages (Continued)

Message Name TCODE Value Direction

Page 40 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
5.3.2 Device ID Message

Message Description: The Device ID Message is used for AUX-only Nexus
implementations. JTAG-based Nexus implementations should use the IEEE
1149.1-defined JTAG ID Register for device ID.

For AUX-only implementations, if the AUX is enabled, i.e., a tool is connected, this
message is output by the target processor only after the target’s debug logic has
been reset by the tool. The tool resets the target’s debug logic by asserting and
de-asserting the Reset In (RSTI) signal.

NOTE
A Device ID Message is not automatically output following power-on
reset, even when a tool is connected. The tool must specifically reset the
target’s debug logic for this message to occur.

In addition to having the target processor send a Device ID Message following a
debug logic reset, the tool is able to request the device ID at any time. For target
processors that implement the NRRs described in Appendix B -
Recommendations for Access to Control and Status Registers, the tool
requests the device ID by sending a Read Register Message containing the device
ID opcode. For target processors that implement device-specific registers, the API
knows which register to read to obtain the device ID.

Table 5-3—Debug Status Message Format

Debug Status Message Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

0 TSTAMP Vendor-variable

Number of cycles message was held in
the buffer or the full timestamp value. For
targets that do not implement timestamp-
ing (or use pins for timestamping), this
field may be omitted. Refer to 4.11.2 -
Timestamping via AUX.

1 STATUS Vendor-fixed Status informationa

a. For target processors that implement the NRRs described in Appendix B - Recommendations
for Access to Control and Status Registers, the status packet contains the same information
as the DS Register. For target processors that implement device specific registers, the status
packet must provide all the information required by the API.

0 SRC Vendor-fixed Client that is source of message.

6 TCODE Fixed Value = 0
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 41 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
5.3.3 Ownership Trace Message

Message Description: There are three ways in which the Ownership Trace
Message may occur:

1. For target processors in which the OTM Register is a read-only alias of a
process ID register, this message is output whenever the process ID
changes.

2. For target processors where the OTM Register is directly written by the
operating system or application code to indicate the current process or
task, this message is output whenever the operating system writes to
the OTM Register.

3. For target processors using virtual memory, this message is output
immediately prior to (or immediately following) a Program/Data Trace
Message with synchronization produced when a periodic message
counter expires. Ownership Trace Messages allow a tool to be regularly
updated with the latest process ID.

Table 5-4—Device ID Message Format

Device ID Message Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

32 ID Fixed
ID information. Refer to B.5.1 - Device ID
(DID) Register.

6 TCODE Fixed Value = 1

Table 5-5—Ownership Trace Message Format

Ownership Trace Message Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

0 TSTAMP Vendor-variable

Number of cycles message was held in
the buffer or the full timestamp value. For
targets that do not implement timestamp-
ing (or use pins for timestamping), this
field may be omitted. Refer to 4.11.2 -
Timestamping via AUX.

1 PROCESS Vendor-fixed Task/process ID.

0 SRC Vendor-fixed
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 2

Page 42 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
5.3.4 Program Trace - Direct Branch Message

Message Description: For target processors that do not implement Branch
History Messages, the Program Trace - Direct Branch Message is output
whenever there is a change of program flow caused by a conditional or
unconditional branch. To conserve AUX bandwidth and trace buffer space, the
target processor may queue trace information about taken direct branches and
output one message containing up to eight I-CNT packets.

Table 5-6—Program Trace - Direct Branch Message Format

Program Trace -
Direct Branch Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

0 TSTAMP Vendor-variable

Number of cycles message was held in the
buffer or the full timestamp value. For targets
that do not implement timestamping (or use
pins for timestamping), this field may be omit-
ted. Refer to 4.11.2 - Timestamping via AUX.

1 I-CNT Variable

Number of instruction units executed since the
last taken branch. Each message may contain
up to eight of these packets, each one corre-
sponding to a direct branch taken.

0 SRC Vendor-fixed
Client that is source of message. For targets
with only a single client, this packet can be
omitted.

6 TCODE Fixed Value = 3
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 43 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
5.3.5 Program Trace - Indirect Branch Message

Message Description: For target processors that do not implement Branch
History Messages, the Program Trace - Indirect Branch Message is output
whenever there is a change of program flow caused by a subroutine call, return
instruction, asynchronous interrupt/trap, or conditional/unconditional indirect
branch instruction where the target address is determined at runtime.

The optional B-TYPE field can be used to distinguish between events that cause
Indirect Branch Messages (i.e., indirect branch vs. exception). Table 5-8 shows
recommended encodings for the B-TYPE field. The size of the packet transmitted
is determined by the number of encodings a client uses.

Table 5-7—Program Trace - Indirect Branch Message Format

Program Trace -
Indirect Branch Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

0 TSTAMP Vendor-variable

Number of cycles message was held in the
buffer or the full timestamp value. For targets
that do not implement timestamping (or use
pins for timestamping), this field may be omit-
ted. Refer to 4.11.2 - Timestamping via AUX.

1 U-ADDR Variable
The unique portion of the branch target address
for a taken indirect branch or exception.

1 I-CNT Variable
Number of instruction units executed since the
last taken branch.

0 B-TYPE Vendor-fixed
Branch type. For targets that do not need to dif-
ferentiate branch types, this packet can be omit-
ted (see Table 5-8).

0 SRC Vendor-fixed
Client that is source of message. For targets
with only a single client, this packet can be
omitted.

6 TCODE Fixed Value = 4

Table 5-8—Recommended B-TYPE Encodings

B-TYPE Value Description

0 Indirect Branch

1 Exception

2 Hardware Loop

Other Reserved

Page 44 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
5.3.6 Program Trace - Direct Branch with Sync Message

Message Description: For target processors that do not implement Branch
History Messages, the Program Trace - Direct Branch with Sync Message is
output when any of the following conditions occurs:

1. Upon exit from system reset to allow the number of instruction units
executed packet in a subsequent Program Trace Message to be
correctly interpreted by the tool. This trace message follows exit from
reset for target processors not capable of immediately generating a
Program Trace - Synchronization Message.

2. Upon detection of a direct branch after program trace is enabled during
normal execution of the embedded processor.

3. Upon exit from a power-down state to allow the number of instruction
units executed packet in a subsequent Program Trace Message to be
correctly interpreted by the tool.

4. Upon detection of a direct branch following the processor’s exit from
debug mode.

5. Upon detection of a direct branch after an overrun condition had
previously occurred in which one or more branch trace occurrences
were discarded by the target processor’s debug logic. To inform the tool
that an overrun condition occurred, the target outputs an Error Message
(TCODE = 8) with an Error code (ECODE) value of 00001 or 00111
immediately prior to the Program Trace - Direct Branch with Sync
Message.

6. Upon detection of a direct branch after the periodic Program Trace
Message counter has expired indicating that 255 non-sync Program
Trace Messages have been sent since the last sync Program Trace
Message. The value of 255 is a maximum number; target processors
may use a smaller value.

7. Upon detection of a direct branch after the EVTI pin has been asserted
and the EIT field in the DC Register (Appendix B - Recommendations
for Access to Control and Status Registers) determines that EVTI pin
action is to generate program trace synchronization. This message is
output by target processors not capable of immediately generating a
Program Trace - Synchronization Message.

8. Upon overflow of the sequential instruction unit counter. Because a
limited counter size must be implemented in the embedded processor,
there will likely be sequential instruction sequences (with no taken
branches), which will cause the counter to overflow.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 45 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
9. (Optional) Upon the occurrence of a watchpoint match and the next
taken direct branch. This trace message follows the Watchpoint Match
Message for target processors not capable of immediately generating a
Program Trace - Synchronization Message.

Table 5-9—Program Trace - Direct Branch with Sync Message Format

Program Trace -
Direct Branch with Sync Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

0 TSTAMP Vendor-variable

Number of cycles message was held in
the buffer or the full timestamp value. For
targets that do not implement timestamp-
ing (or use pins for timestamping), this
field may be omitted. Refer to 4.11.2 -
Timestamping via AUX.

1 F-ADDR Variable
The full target address for a taken direct
branch. MSBs that have a value of 0 may
be truncated.

1 I-CNT Variable
Number of instruction units executed since
the last taken branch.

0 CANCEL Vendor-variable

Number of previous Program Trace Mes-
sages that should be ignored by the tool.
This packet is generated only by proces-
sors performing speculative execution
where a trace message may be output
before it is known whether the branch was
actually taken.

0 DCONT Vendor-fixed

Indicates whether synchronization is a
result of a discontinuity in the program flow
relative to the prior Program Trace Mes-
sage. This field can be used to determine
whether the I-CNT field is valid for a given
source of synchronization.

0 SRC Vendor-fixed
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 11

Page 46 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
5.3.7 Program Trace - Indirect Branch with Sync Message

Message Description: For target processors that do not implement Branch
History Messages, the Program Trace - Indirect Branch with Sync Message is
output when any of the following conditions occurs:

1. Upon exit from system reset to allow the number of instruction units
executed packet in a subsequent Program Trace Message to be
correctly interpreted by the tool. This trace message follows exit from
reset for target processors not capable of immediately generating a
Program Trace - Synchronization Message.

2. Upon detection of an indirect branch after program trace is enabled
during normal execution of the embedded processor.

3. Upon exit from a power-down state to allow the number of instruction
units executed packet in a subsequent Program Trace Message to be
correctly interpreted by the tool.

4. Upon detection of an indirect branch following the processor’s exit from
debug mode.

5. Upon detection of an indirect branch (a change of program flow caused
by a subroutine call, return instruction, or asynchronous interrupt/trap)
after an overrun condition had previously occurred in which one or more
branch trace occurrences were discarded by the target processor’s
debug logic. To inform the tool that an overrun condition occurred, the
target outputs an Error Message (TCODE = 8) with an ECODE value of
00001 or 00111 immediately prior to the Program Trace - Indirect Branch
with Sync Message.

6. Upon detection of an indirect branch after the periodic Program Trace
Message counter has expired, indicating that 255 non-sync Program
Trace Messages have been sent since the last sync Program Trace
Message. The value of 255 is a maximum number; target processors
may use a smaller value.

7. Upon detection of an indirect branch when a debug control register field
specifies that EVTI pin action is to generate program trace
synchronization and the EVTI pin has been asserted. This message is
output by target processors not capable of immediately generating a
Program Trace - Synchronization Message.

8. Upon overflow of the sequential instruction unit counter. Because a
limited counter size must be implemented in the embedded processor,
there will likely be sequential instruction sequences (with no taken
branches), which will cause the counter to overflow.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 47 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
9. (Optional) Upon the occurrence of a watchpoint match and the next
taken indirect branch. This trace message follows the Watchpoint Match
Message for target processors not capable of immediately generating a
Program Trace - Synchronization Message.

Table 5-10—Program Trace - Indirect Branch with Sync Message Format

Program Trace -
Indirect Branch with Sync Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

0 TSTAMP Vendor-variable

Number of cycles message was held in
the buffer or the full timestamp value. For
targets that do not implement timestamp-
ing (or use pins for timestamping), this
field may be omitted. Refer to 4.11.2 -
Timestamping via AUX.

1 F-ADDR Variable
The full target address for a taken indirect
branch or exception. MSBs that have a
value of 0 may be truncated.

1 I-CNT Variable
Number of instruction units executed since
the last taken branch.

0 CANCEL Vendor-variable

Number of previous Program Trace Mes-
sages that should be ignored by the tool.
This packet is generated only by proces-
sors performing speculative execution
where a trace message may be output
before it is known whether the branch was
actually taken.

0 B-TYPE Vendor-fixed
Branch type. For targets that do not need
to differentiate branch types, this packet
can be omitted (see Table 5-8).

0 DCONT Vendor-fixed

Indicates whether synchronization is a
result of a discontinuity in the program flow
relative to the prior Program Trace Mes-
sage. This field can be used to determine
whether the I-CNT field is valid for a given
source of synchronization.

0 SRC Vendor-fixed
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 12

Page 48 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
5.3.8 Program Trace - Resource Full Message

Message Description: Certain resources internal to the device, such as counters
and history buffers, have hardware limitations to their size. To avoid losing
information when these resources become full, a Resource Full Message can be
transmitted. The information from this message is added or concatenated with
information from subsequent messages to interpret the full picture of what has
transpired. Multiple Resource Full Messages can occur before the arrival of the
message with which the information belongs.

The Program Trace - Resource Full Message is sent out when any of the
resources defined in Table 5-12 have reached their maximum value.

Table 5-11—Program Trace - Resource Full Message Format

Program Trace -
Resource Full Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

0 TSTAMP Vendor-variable

Number of cycles message was held in the buffer
or the full timestamp value. For targets that do not
implement timestamping (or use pins for times-
tamping), this field may be omitted. Refer to
4.11.2 - Timestamping via AUX.

0 RDATA Vendor-variable

Data defined by the resource code (RCODE).
Zero to eight variable length packets can be
included within a single message. The exact
count depends on the RCODE value. Refer to
Table 5-12 for detail.

4 RCODE Fixed
Resource code. This code indicates which inter-
nal resource has reached its maximum value.
Refer to Table 5-12 for detail.

0 SRC Vendor-fixed
Client that is source of message. For targets with
only a single client, this packet can be omitted.

6 TCODE Fixed Value = 27

Table 5-12—Recommended Resource Code (RCODE) Description

Resource Code Resource Data Packet Value

0b0000
Program Trace - Sequential
Instruction Counter

Number of instruction units executed since the
last taken branch.

0b0001
Program Trace - Branch/
Predicate History

Branch/Predicate instruction history. This
packet is terminated by a stop bit set to 1 after
the last history bit. This ending allows the tool
to determine which bits are part of the history
field and which are padded zeros.

0b0010-0b0111 Reserved Reserved

0b1000-0b1111 Vendor-defined Vendor-defined
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 49 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
5.3.9 Program Trace - Indirect Branch History Message

Message Description: In order to alleviate the bandwidth concerns on higher
performing processors or to trace predicated instructions, an alternative method
for generating Program Trace Messages is supported.

For target processors that do not implement traditional Branch History Messages,
the Program Trace - Indirect Branch History Message is output whenever there is
a change of program flow caused by a subroutine call, return instruction, or
asynchronous interrupt/trap or conditional/unconditional indirect branch
instruction where the target address is determined at runtime.

The history field represents direct branch/predicate instruction information. See
explanation of the history field in 5.2 - Definitions and Terminology.

.

Table 5-13—Program Trace - Indirect Branch History Message Format

Program Trace -
Indirect Branch History Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

0 TSTAMP Vendor-variable

Number of cycles message was held in the
buffer or the full timestamp value. For targets
that do not implement timestamping (or use
pins for timestamping), this field may be omit-
ted. Refer to 4.11.2 - Timestamping via AUX.

1 HIST Variable

Branch/Predicate Instruction History. This
packet is terminated by a stop bit set to 1 after
the last history bit. This ending allows the tool to
determine which bits are part of the history field
and which are padded zeros.

1 U-ADDR Variable
The unique portion of the branch target address
for a taken indirect branch or exception.

1 I-CNT Variable
Number of instruction units executed since the
last taken branch.

0 B-TYPE Vendor-fixed
Branch type. For targets that do not need to dif-
ferentiate branch types, this packet can be omit-
ted (see Table 5-8).

0 SRC Vendor-fixed
Client that is source of message. For targets
with only a single client, this packet can be
omitted.

6 TCODE Fixed Value = 28

Page 50 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
5.3.10 Program Trace - Indirect Branch History with Sync Message

Message Description: For target processors that do not implement traditional
Branch History Messages, the Program Trace - Indirect Branch History with Sync
Message is output when any of the following conditions occurs:

1. Upon exit from system reset to allow the number of instruction units
executed packet in a subsequent Program Trace Message to be
correctly interpreted by the tool. This trace message follows exit from
reset for target processors not capable of immediately generating a
Program Trace - Synchronization Message.

2. Upon detection of an indirect branch after program trace is enabled
during normal execution of the embedded processor.

3. Upon exit from a power-down state to allow the number of instruction
units executed packet in a subsequent Program Trace Message to be
correctly interpreted by the tool.

4. Upon detection of an indirect branch following the processor’s exit from
debug mode.

5. Upon detection of an indirect branch after an overrun condition had
previously occurred in which one or more branch trace occurrences
were discarded by the target processor’s debug logic. To inform the tool
that an overrun condition occurred, the target outputs an Error Message
(TCODE = 8) with an ECODE value of 00001 or 00111 immediately prior
to the Program Trace - Indirect Branch History with Sync Message.

6. Upon detection of an indirect branch after the periodic Program Trace
Message counter has expired, indicating that 255 non-sync Program
Trace Messages have been sent since the last sync Program Trace
Message. The value of 255 is a maximum number; target processors
may use a smaller value.

7. Upon detection of an indirect branch when a debug control register field
specifies that EVTI pin action is to generate program trace
synchronization and the EVTI pin has been asserted. This message is
output by target processors not capable of immediately generating a
Program Trace - Synchronization Message.

8. Upon overflow of the sequential instruction unit counter. Because a
limited counter size must be implemented in the embedded processor,
there will likely be sequential instruction sequences (with no taken
branches), which will cause the counter to overflow.

9. (Optional) Upon the occurrence of a watchpoint match and the next
taken indirect branch. This trace message follows the Watchpoint Match
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 51 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
Message for target processors not capable of immediately generating a
Program Trace - Synchronization Message.

Table 5-14—Program Trace - Indirect Branch History with Sync Message
Format

Program Trace -
Indirect Branch History with Sync Message

Direction: from target

Minimum
Packet Size
(bits)

Packet Name Packet Type Description

0 TSTAMP Vendor-variable

Number of cycles message was held in
the buffer or the full timestamp value. For
targets that do not implement timestamp-
ing (or use pins for timestamping), this
field may be omitted. Refer to 4.11.2 -
Timestamping via AUX.

1 HIST Variable

Branch/Predicate Instruction History. This
packet is terminated by a stop bit set to 1
after the last history bit. This ending allows
the tool to determine which bits are part of
the history field and which are padded
zeros.

1 F-ADDR Variable
The full target address for a taken indirect
branch or exception. MSBs that have a
value of 0 may be truncated.

1 I-CNT Variable
Number of instruction units executed since
the last taken branch.

0 CANCEL Vendor-variable

Number of previous Program Trace Mes-
sages that should be ignored by the tool.
This packet is generated only by proces-
sors performing speculative execution
where a trace message may be output
before it is known whether the branch was
actually taken.

0 B-TYPE Vendor-fixed
Branch type. For targets that do not need
to differentiate branch types, this packet
can be omitted (see Table 5-8).

0 DCONT Vendor-fixed

Indicates whether synchronization is a
result of a discontinuity in the program flow
relative to the prior Program Trace Mes-
sage. This field can be used to determine
whether the I-CNT field is valid for a given
source of synchronization.

0 SRC Vendor-fixed
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 29

Page 52 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
5.3.11 Program Trace - Synchronization Message

Message Description: The Program Trace - Synchronization Message is output
by the target processor when any of the following conditions occurs:

1. Upon exit from reset to allow the number of instruction units executed
packet in a subsequent Program Trace Message to be correctly
interpreted by the tool.

2. When program trace is enabled during normal execution of the
embedded processor.

3. Upon exit from a power-down state to allow the number of instruction
units executed packet in a subsequent Program Trace Message to be
correctly interpreted by the tool.

4. Upon exiting from debug mode.

5. After an overrun condition had previously occurred in which one or more
branch trace occurrences were discarded by the target processor’s
debug logic. To inform the tool that an overrun condition occurred, the
target outputs an Error Message (TCODE = 8) with an ECODE value of
00001 or 00111 immediately prior to the Program Trace -
Synchronization Message.

6. Upon expiration of the periodic Program Trace Message counter,
indicating that 255 non-sync Program Trace Messages have been sent
since the last sync Program Trace Message. The value of 255 is a
maximum number; target processors may use a smaller value.

7. After the EVTI pin has been asserted when a debug control register field
specifies that EVTI pin action is to generate program trace
synchronization.

8. Upon overflow of the sequential instruction unit counter. Because a
limited counter size must be implemented in the embedded processor,
there will likely be sequential instruction sequences (with no taken
branches), which will cause the counter to overflow.

9. (Optional) Upon the occurrence of a watchpoint match. This trace
message immediately follows the Watchpoint Match Message for target
processors capable of immediately generating a Program Trace -
Synchronization Message. The program counter (PC) value included is
the value of the PC at the time of the watchpoint match.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 53 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
NOTE
The Direct Branch with Sync Message, Indirect Branch with Sync
Message, and/or Indirect Branch History with Sync Message may be
implemented in lieu of the Synchronization Message in order to keep
temporal ordering of Program Trace Messages.

Table 5-15—Program Trace - Synchronization Message Format

Program Trace -
Synchronization Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

0 TSTAMP Vendor-variable

Number of cycles message was held in
the buffer or the full timestamp value. For
targets that do not implement timestamp-
ing (or use pins for timestamping), this
field may be omitted. Refer to 4.11.2 -
Timestamping via AUX.

1 PC Variable
The full current instruction address. MSBs
that have a value of 0 may be truncated.

1 I-CNT Variable
Number of instruction units executed since
the last taken branch.

0 DCONT Vendor-fixed

Indicates whether synchronization is a
result of a discontinuity in the program flow
relative to the prior Program Trace Mes-
sage. This field can be used to determine
whether the I-CNT field is valid for a given
source of synchronization.

0 SRC Vendor-fixed
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 9

Page 54 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
5.3.12 Program Trace - Correction Message

Message Description: The Program Trace - Correction Message is output by the
target processor when it determines after a Program Trace Message has been
sent, that the value in the number of instruction units executed packet is incorrect.

Note that if the ADJUST packet = 1, the last taken branch was actually cancelled.
Consequently, in the next I-CNT packet transmitted, the taken branch that was
cancelled will be counted as part of the sequential instruction units.

Table 5-16—Program Trace - Correction Message Format

Program Trace -
Correction Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

0 TSTAMP Vendor-variable

Number of cycles message was held in
the buffer or the full timestamp value. For
targets that do not implement timestamp-
ing (or use pins for timestamping), this
field may be omitted. Refer to 4.11.2 -
Timestamping via AUX.

1 ADJUST Variable

A number correcting the number of
instruction units executed since the last
taken branch. This number (unsigned)
should be subtracted by the tool from the
last I-CNT packet transmitted.

0 SRC Vendor-fixed
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 10
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 55 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
5.3.13 Program Trace - Repeat Branch Message

Message Description: When a series of instructions are executed instead of a
single instruction (hardware loop), the Program Trace - Repeat Branch Message
can be transmitted to indicate how many times a branch repeated. A branch is
determined to be repeated when the I-CNT value matches the previous message.
The original branch message is only transmitted once, followed by the Program
Trace - Repeat Branch Message.

Message Notes:

• When using traditional Program Trace Messages, the Program Trace -
Repeat Branch Message can be used for hardware loops or for normal
direct branches where the I-CNT value matches the previous direct
branch’s I-CNT value. In the hardware loop case, both the I-CNT value
and target address will match the previous branch. The external
development tool will need to distinguish the two cases.

• When using Branch History Messages, the Program Trace - Repeat
Branch Message is not necessary for direct branches. The direct branch
information is recorded in the history buffer and the Indirect Branch with
History Message is transmitted as necessary. Only a single message is
generated.

• When Branch History Messages are used and the repeated branch is an
indirect branch, the Indirect Branch with History Message can be
executed repeatedly, or a Repeat Branch Message can be generated
when the branch qualifies (I-CNT and target address match) and the
history buffer is empty.

Table 5-17—Program Trace - Repeat Branch Message Format

Program Trace -
Repeat Branch Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

0 TSTAMP Vendor-variable

Number of cycles message was held in the
buffer or the full timestamp value. For targets
that do not implement timestamping (or use
pins for timestamping), this field may be omit-
ted. Refer to 4.11.2 - Timestamping via AUX.

1 B-CNT Variable
Repeat Branch Count. The number of times the
branch was repeated.

0 SRC Vendor-fixed
Client that is source of message. For targets
with only a single client, this packet can be
omitted.

6 TCODE Fixed Value = 30

Page 56 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
5.3.14 Program Trace - Repeat Instruction Message

Message Description: A repeat instruction is a single instruction that executes a
multiple number of times. Since the number of times the instruction is executed is
a run-time variable, it is unknown to the debug/development tool how many times
the instruction will be repeated. The Program Trace - Repeat Instruction Message
is used to trace repeated instructions whose repetition count is a run-time
variable.

Message Notes:

• For predicated repeat instructions, no bit should be added to the branch/
predicate history. Instead, the true predicate generates a message, and
the false predicate is added to the sequential instruction count.

• The repeat instruction count (R-CNT) value is the number of times the
instruction is repeated, which is one less than the total number of times
the instruction was executed. An R-CNT value of 0 shall be interpreted
as 2^N repetitions where N is the maximum R-CNT field size for that
target.

Table 5-18—Program Trace - Repeat Instruction Message Format

Program Trace -
Repeat Instruction Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

0 TSTAMP Vendor-variable

Number of cycles message was held in the
buffer or the full timestamp value. For targets
that do not implement timestamping (or use
pins for timestamping), this field may be omit-
ted. Refer to 4.11.2 - Timestamping via AUX.

1 HIST Variable

Branch/Predicate instruction history. This
packet is terminated by a stop bit set to 1 after
the last history bit. This ending allows the tool to
determine which bits are part of the history field
and which are padded zeros.

1 I-CNT Variable
Number of instruction units executed since the
last taken branch.

1 R-CNT Variable
Repeat instruction count. The number of times
the instruction was repeated.

0 SRC Vendor-fixed
Client that is source of message. For targets
with only a single client, this packet can be
omitted.

6 TCODE Fixed Value = 31
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 57 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
5.3.15 Program Trace - Repeat Instruction with Sync Message

Message Description: For target processors that do not implement traditional
Branch History Messages, the Program Trace - Repeat Instruction with Sync
Message is output when any of the following conditions occurs:

1. Upon exit from system reset to allow the number of instruction units
executed packet in a subsequent Program Trace Message to be
correctly interpreted by the tool. This trace message follows exit from
reset for target processors not capable of immediately generating a
Program Trace - Synchronization Message.

2. Upon execution of a repeated instruction after program trace is enabled
during normal execution of the embedded processor.

3. Upon exit from a power-down state to allow the number of instruction
units executed packet in a subsequent Program Trace Message to be
correctly interpreted by the tool.

4. Upon execution of a repeated instruction following the processor’s exit
from debug mode.

5. Upon execution of a repeated instruction after an overrun condition had
previously occurred in which one or more branch trace occurrences
were discarded by the target processor’s debug logic. To inform the tool
that an overrun condition occurred, the target outputs an Error Message
(TCODE = 8) with an ECODE value of 00001 or 00111 immediately prior
to the Program Trace - Indirect Branch History with Sync Message.

6. Upon execution of a repeated instruction after the periodic Program
Trace Message counter has expired, indicating that 255 non-sync
Program Trace Messages have been sent since the last sync Program
Trace Message. The value of 255 is a maximum number; target
processors may use a smaller value.

7. Upon execution of a repeated instruction when a debug control register
field specifies that EVTI pin action is to generate program trace
synchronization and the EVTI pin has been asserted. This message is
output by target processors not capable of immediately generating a
Program Trace - Synchronization Message.

8. Upon overflow of the sequential instruction unit counter. Because a
limited counter size must be implemented in the embedded processor,
there will likely be sequential instruction sequences (with no taken
branches), which will cause the counter to overflow.

9. (Optional) Upon the occurrence of a watchpoint match and the next
repeated instruction. This trace message follows the Watchpoint Match

Page 58 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
Message for target processors not capable of immediately generating a
Program Trace - Synchronization Message.

Table 5-19—Program Trace - Repeat Instruction with Sync Message Format

Program Trace -
Repeat Instruction with Sync Message

Direction: from target

Minimum
Packet Size
(bits)

Packet Name Packet Type Description

0 TSTAMP Vendor-variable

Number of cycles message was held in
the buffer or the full timestamp value. For
targets that do not implement timestamp-
ing (or use pins for timestamping), this
field may be omitted. Refer to 4.11.2 -
Timestamping via AUX.

1 HIST Variable

Branch/Predicate instruction history. This
packet is terminated by a stop bit set to 1
after the last history bit. This ending allows
the tool to determine which bits are part of
the history field and which are padded
zeros.

1 F-ADDR Variable
The full target address of the repeated
instruction. MSBs that have a value of 0
may be truncated.

1 I-CNT Variable
Number of instruction units executed
since the last taken branch.

1 R-CNT Variable
Repeat Instruction Count. The number of
times the instruction was repeated.

0 SRC Vendor-fixed
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 32
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 59 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
5.3.16 Program Trace - Correlation Message

Message Description: Program Trace - Correlation Messages are used to
correlate events to the program flow that may not be associated with the
instruction stream (i.e., Data Trace Messages). The occurrence of a Nexus-
defined or vendor-defined event will cause this message to be transmitted.

Message Notes:

• In cases where this message is sent due to events that may disable
program trace (i.e., low-power mode, debug mode, program trace
disabled), the I-CNT value may be cleared after sending the Program
Trace - Correlation Message.

• In cases where this message is sent to correlate events that do not
necessarily affect the program flow (i.e., data read or write), the I-CNT
value should not be cleared upon sending the Program Trace -
Correlation Message.

• For targets that incorporate multiple ECODEs, the CDATA field must be
implemented consistently. If a Program Trace - Correlation Message due
to one event requires a CDATA value, all Program Trace - Correlation
Messages for that target must incorporate the CDATA field for other
events as well.

Table 5-20—Program Trace - Correlation Message Format

Program Trace -
Correlation Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

0 TSTAMP Vendor-variable

Number of cycles message was held in the
buffer or the full timestamp value. For targets
that do not implement timestamping (or use
pins for timestamping), this field may be omit-
ted. Refer to 4.11.2 - Timestamping via AUX.

0 CDATA Vendor-variable
This packet is a vendor-defined field. It can rep-
resent a value used in correlating an event with
the program flow (i.e., branch history).

1 I-CNT Variable
Number of instruction units executed since the
last taken branch.

0 EVCODE Vendor-fixed Event Code. Refer to Table 5-21.

0 SRC Vendor-fixed
Client that is source of message. For targets
with only a single client, this packet can be
omitted.

6 TCODE Fixed Value = 33

Page 60 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
5.3.17 Data Trace - Data Write/Read Messages

Message Description: Data Trace - Data Write/Read Messages are output by
the target processor when it detects a memory write/read that matches the debug
logic’s data trace attributes.

Table 5-21—Recommended Event Code (EVCODE) Description

Event Code (EVCODE) Event Description

0b0000 Entry into debug mode

0b0001 Entry into low-power mode

0b0010 Data Trace - Write

0b0011 Data Trace - Read

0b0100 Program Trace Disabled

0b0101-0b0111 Reserved for future functionality

0b1000-0b1111 Vendor-defined

Table 5-22—Data Trace - Data Write/Read Message Formats

Data Trace -
Data Write/Read Messages

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

0 TSTAMP Vendor-variable

Number of cycles message was held in
the buffer or the full timestamp value. For
targets that do not implement timestamp-
ing (or use pins for timestamping), this
field may be omitted. Refer to 4.11.2 -
Timestamping via AUX.

1 DATA Variable

The data value written/read. The length of
this packet must be equal to the size of the
data write/read if the DSZ field is omitted.
MSBs that have a value of 0 may be trun-
cated if the DSZ field is included.

1 U-ADDR Variable
The unique portion of the data write/read
address, which is relative to the previous
Data Trace Message (read or write).

0 DCORR Vendor-fixed

Field used for correlating the Data Trace
Message to the program flow (e.g., I-CNT
value or instruction address).

For target processors that do not need to
correlate data threads to instruction
threads or that implement this feature
within Program Correlation Messages, this
field may be omitted.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 61 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
5.3.18 Data Trace - Data Write/Read with Sync Messages

Message Description: Data Trace - Data Write/Read with Sync Messages are an
alternative to the Data Trace - Data Write/Read Messages. They are output
instead of a Data Trace - Data Write/Read Message when a memory write (read)
occurs that matches the debug logic’s data trace attributes and when one of the
following conditions has occurred:

1. Upon exit from reset to allow the unique portion of the data write (read)
address of following Data Trace - Data Write/Read Messages to be
correctly interpreted by the tool.

2. When data trace is enabled during normal execution of the embedded
processor.

3. Upon exit from a power-down state to allow the unique portion of the
data write (read) address of following Data Trace - Data Write/Read
Messages to be correctly interpreted by the tool.

4. After the EVTI pin has been asserted when a debug control register field
specifies that EVTI pin action is to generate data trace synchronization.

5. After an overrun condition had previously occurred in which one or more
data trace occurrences were discarded by the target processor’s debug

0 DSZ Vendor-fixed

Indication of the size of the write/read. The
width and values for this field are vendor
defined. For targets in which the size can
be determined from the size of the DATA
packet, this field can be omitted.

See Table 5-24 for recommended size
encodings for targets that implement this
field.

0 MAP Vendor-fixed

A number to indicate the memory map cur-
rently in use by the target processor. For
targets with only a single memory map,
this packet can be omitted.

0 SRC Vendor-fixed
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 5 (write); Value = 6 (read)

Table 5-22—Data Trace - Data Write/Read Message Formats (Continued)

Data Trace -
Data Write/Read Messages

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

Page 62 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
logic. To inform the tool that an overrun condition occurred, the target
outputs an Error Message (TCODE = 8) with an ECODE value of 00010
or 00111 immediately prior to the Data Trace - Data Write with Sync
Message.

6. Upon expiration of the periodic Data Trace Message counter, indicating
that 255 non-sync Data Trace Messages have been sent since the last
sync Data Trace Message. The value of 255 is a maximum number;
target processors may use a smaller value.

7. Upon detection of a data write/read following the processor’s exit from
debug mode.

Table 5-23—Data Trace - Data Write/Read
with Sync Message Formats

Data Trace -
Data Write/Read with Sync Messages

Direction: from target

Minimum
Packet Size
(bits)

Packet Name Packet Type Description

0 TSTAMP Vendor-variable

Number of cycles message was held in the
buffer or the full timestamp value. For tar-
gets that do not implement timestamping (or
use pins for timestamping), this field may be
omitted. Refer to 4.11.2 - Timestamping
via AUX.

1 DATA Variable

The data value written/read. The length of
this packet must be equal to the size of the
data write/read if the DSZ field is omitted.
MSBs that have a value of 0 may be trun-
cated if the DSZ field is included.

1 F-ADDR Variable
The full address of the memory location writ-
ten/read. MSBs that have a value of 0 may
be truncated.

0 CANCEL Vendor-variable

Number of previous Data Trace Messages
that should be ignored by the tool. This
packet is generated only by processors per-
forming speculative execution where a trace
message may be output before it is known
whether the data write actually occurred.

0 DCORR Vendor-fixed

Field used for correlating the Data Trace
Message to the program flow (e.g., I-CNT
value or instruction address).

For target processors that do not need to
correlate data threads to address threads or
that implement this correlation within Pro-
gram Correlation Messages, this field may
be omitted.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 63 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
NOTE
A target/tool does not need to support all of the data sizes in Table 5-24.

0 DSZ Vendor-fixed

Indication of the size of the write/read. The
width and values for this field are vendor
defined. For targets in which the size can be
determined from the size of the DATA
packet, this field can be omitted.

See Table 5-24 for recommended data size
encodings for targets that implement this
field.

0 MAP Vendor-fixed

A number to indicate the memory map cur-
rently in use by the target processor. For
targets with only a single memory map, this
packet can be omitted.

0 SRC Vendor-fixed
Client that is source of message. For targets
with only a single client, this packet can be
omitted.

6 TCODE Fixed Value = 13 (write); Value = 14 (read)

Table 5-24—Recommended Data Size Encodings

DSZ Encoding Data Size

000 8-bit

001 16-bit

010 32-bit

011 64-bit

100-101 Vendor-defined

110-111 Reserved for future sizes

Table 5-23—Data Trace - Data Write/Read
with Sync Message Formats (Continued)

Data Trace -
Data Write/Read with Sync Messages

Direction: from target

Minimum
Packet Size
(bits)

Packet Name Packet Type Description

Page 64 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
5.3.19 Data Acquisition Message

Message Description: The Data Acquisition Message is sent by a target when
the target processor writes the value of 0x0 to the Data Acquisition Control
Register.

5.3.20 Error Message

Message Description: An Error Message provides an indication of which client (if
more than one was present on the device) generated an error and what type of
error was generated. Table 5-27 below lists the types of errors which can occur as
well as their encoded values.

For any of the trace overrun categories, an Error Message, containing an overrun
error code, is to inform the tool that the target has discarded trace occurrences
because of insufficient space in its trace output queue. The Error Message is sent
immediately prior to a synchronization message (e.g., OTM, BTM with
synchronization, or DTM with synchronization) as soon as space is available in
the trace output queue.

Table 5-25—Data Acquisition Message Format

Data Acquisition Message Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

0 TSTAMP Vendor-variable

Number of cycles message was held in
the buffer or the full timestamp value. For
targets that do not implement timestamp-
ing (or use pins for timestamping), this
field may be omitted. Refer to 4.11.2 -
Timestamping via AUX.

1 DQDATA Variable One or more packets of data values.

1 IDTAG Vendor-fixed
Data ID tag, specifying which group of
data is included in the Data Acquisition
Message.

6 TCODE Fixed Value = 7
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 65 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
Table 5-26—Error Message Format

Error Message Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

0 TSTAMP Vendor-variable

Number of cycles message was held in
the buffer or the full timestamp value. For
targets that do not implement timestamp-
ing (or use pins for timestamping), this
field may be omitted. Refer to 4.11.2 -
Timestamping via AUX.

5 ECODE Fixed Error code. Refer to Table 5-27.

0 SRC Vendor-fixed
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 8

Table 5-27—Recommended Error Codes

Error Code Description

00000 Ownership trace overrun.

00001 Program trace overrun.

00010 Data trace overrun.

00011

Read/write access error (read or write error to user memory map). This
error code applies only to targets that support the Read/Write Access
Messages for NRRs (Appendix B - Recommendations for Access to
Control and Status Registers).a

a. For targets that implement vendor-defined debug control and status registers and use
Public Messages 22–26 to provide read/write access, an error condition is indicated by the
Status (ST) field in the Target/Tool Response Message.

00100
Invalid message (message type not implemented). The Error Message is
sent by the target as soon as the invalid message is detected.

00101

Invalid access opcode (NRR not implemented). This error code applies
only to targets that support the Read/Write Access Messages for NRRs
(Appendix B - Recommendations for Access to Control and Status
Registers). The Error Message is sent by the target as soon as the invalid
opcode is detected.

00110 Watchpoint overrun.

00111 Program and/or data and/or ownership trace overrun.

01000
Program trace and/or data trace and/or ownership trace and/or watchpoint
overrun.

01001–10111 Reserved.

11000–11111 Vendor defined.

Page 66 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
5.3.21 Watchpoint Match Message

Message Description: The Watchpoint Match Message is sent by the target
whenever a watchpoint match occurs. Multiple watchpoint matches can be
indicated in the same message. The debug logic in the target must ensure that
Watchpoint Match Messages can never be cancelled once they have been
generated. If watchpoint match occurrences are discarded because of insufficient
space in the trace output queue, the target must send the tool an Error Message
prior to the next Watchpoint Match Message actually sent so that the tool knows
that one or more watchpoint match occurrences were discarded.

Table 5-28—Watchpoint Match Message Format

Watchpoint Match Message Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

0 TSTAMP Vendor-variable

Number of cycles message was held in
the buffer or the full timestamp value. For
targets that do not implement timestamp-
ing (or use pins for timestamping), this
field may be omitted. Refer to 4.11.2 -
Timestamping via AUX.

2 WPHIT Vendor-fixed

Each bit position in this N-bit field corre-
sponds to a different watchpoint number.
Bit positions 0 through N correspond to
watchpoints 0 through N. A “1” in a bit
position indicates a watchpoint match
occurred.

0 SRC Vendor-fixed
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 15
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 67 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
5.3.22 Port Replacement - Output Message

Message Description: The Port Replacement - Output Message is sent by the
target to set up external port replacement logic on the target system. For LSIO
port bits defined as outputs, this message is also used to set the state of the pins.

5.3.23 Port Replacement - Input Message

Message Description: The Port Replacement - Input Message is sent by the tool
upon the occurrence of a change in the state of one or more input pins.

Table 5-29—Port Replacement - Output Message Format

Port Replacement -
Output Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

16 OUT Fixed

Each bit corresponds to one of the 16
LSIO pins involved with port replacement.
When the direction of the pin is an output,
the pin state corresponds to the value of
the bit in this packet. Pins defined as
inputs are unaffected by corresponding
bits in this packet.

16 DIR Fixed

Each bit specifies the direction of one of
the 16 LSIO pins involved with port
replacement.
0 = input
1 = output

6 TCODE Fixed Value = 20

Table 5-30—Port Replacement - Input Message Format

Port Replacement -
Input Message

Direction: from tool

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

16 IN Fixed

Each bit corresponds to one of the 16
LSIO pins involved with port replacement.
When the direction of the pin is an input,
this message is used to read the pin state.

6 TCODE Fixed Value = 21

Page 68 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
5.3.24 NRR Access - Target Ready Message

Message Description: For target processors that implement the NRRs described
in Appendix B - Recommendations for Access to Control and Status
Registers, the target sends the NNR Access - Target Ready Message when it
has completed the actions that were specified in a previous Read/Write Access
Message from the tool and is able to accept another command. The tool sends
the NRR Access - Target Ready Message when it is able to accept another
message from the target as part of a block read sequence.

NOTE
The NRR Access - Target Ready Message will not normally be used by
target processors that implement vendor-defined registers or that
access Nexus registers via the IEEE 1149.1 port.

5.3.25 NRR Access - Read Register Message

Message Description: For target processors that implement the NRRs described
in Appendix B - Recommendations for Access to Control and Status
Registers, the tool sends the NRR Access - Read Register Message when it
wants to read control or status information from the target. The target responds to
the Read Register Message with a Read/Write Response Message containing the
requested information.

NOTE
The NRR Access - Read Register Message will not normally be used by
target processors that implement vendor-defined registers or that
access Nexus registers via the IEEE 1149.1 port.

Table 5-31—NRR Access - Target Ready Message Format

NRR Access -
Target Ready Message

Direction: from tool, from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

6 TCODE Fixed Value = 16
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 69 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
5.3.26 NRR Access - Write Register Message

Message Description: For target processors that implement the NRRs described
in Appendix B - Recommendations for Access to Control and Status
Registers, the tool uses the NRR Access - Write Register Message to control
debug resources within the target and to send data to the target. When the target
has processed this message and is able to accept another Read/Write Access
Message from the tool, it responds with a Target Ready Message.

NOTE
The NRR Access - Write Register Message will not normally be used by
target processors that implement vendor-defined registers or that
access Nexus registers via the IEEE 1149.1 port.

Table 5-32—NRR Access - Read Register Message Format

NRR Access -
Read Register Message

Direction: from tool

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

8 OPCODE Fixed

Refer to Appendix B - Recommenda-
tions for Access to Control and Status
Registers for a list of all opcodes that the
tool can use to request the target to return
specific status or data.

6 TCODE Fixed Value = 17

Table 5-33—NRR Access - Write Register Message Format

NRR Access -
Write Register Message

Direction: from tool

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

8 REGVAL Variable

Depending on the opcode selected, the
message may include one or more fixed-
length packets of information downloaded
to the target.

8 OPCODE Fixed

Refer to Appendix B - Recommenda-
tions for Access to Control and Status
Registers for a list of all opcodes that the
tool can use to send debug control com-
mands and data to the target.

6 TCODE Fixed Value = 18

Page 70 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
5.3.27 NRR Access - Read/Write Response Message

Message Description: For target processors that implement the NRRs described in
Appendix B - Recommendations for Access to Control and Status Registers, the
NRR Access - Read/Write Response Message is sent in the following circumstances:

• By a target in response to a Read Register Message issued by the tool.
The information packets included in the message depend on the opcode
in the original Read Register Message.

• By a target in response to a Write Register Message (with RWA opcode,
RW field = Read) from the tool. The message contains a single data
word of the size specified in the Write Register Message.

• By a target in response to each Target Ready Message from the tool that
follows a block read command issued by the tool. The message contains
a single data word of the size specified in the Write Register Message.
The target continues to send messages until all data originally specified
by the access count (CNT) field have been transferred. The tool can
prematurely terminate the data transfer sequence by responding to a
message with a Write Register Message (with RWA opcode, RW field =
Read, SC = 0) instead of with a Target Ready Message.

• By a tool in response to each Target Ready Message issued by the
target that follows a block write command issued by the tool. The
message contains a single data word of the size specified in the Write
Register Message. The tool continues to send messages until all data
originally specified by the access count (CNT) field have been
transferred. The tool can prematurely terminate the data transfer
sequence by sending a Write Register Message (with RWA opcode, RW
field = Write, SC = 0) instead of with another Read/Write Response Message.

NOTE
The NRR Access - Read/Write Response Message will not normally be
used by target processors that implement vendor-defined registers or
that access Nexus registers via the IEEE 1149.1 port.

Table 5-34—NRR Access - Read/Write Response Message Format

NRR Access -
Read/Write Response Message

Direction: from tool, from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

8 REGVAL Variable
Depending on the opcode selected, the
message includes one or more fixed-length
packets of information.

6 TCODE Fixed Value = 19
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 71 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
5.3.28 Memory Access - Read Target/Tool Message

Message Description: For embedded processors that implement vendor-defined
development registers (not NRRs) or MSM, the Memory Access - Read Target/
Tool Message provides a mechanism for reading memory locations within the
target or the tool.

Message Notes:

• The tool sends the Memory Access - Read Target/Tool Message when it
wants to read a location in the target’s memory-mapped address space.

• The target sends the Memory Access - Read Target/Tool Message when
it wants to read a location in the tool’s memory space.

Table 5-35—Memory Access - Read Target/Tool Message Format

Memory Access -
Read Target/Tool Message

Direction: from tool, from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

1 ADDRESS Variable

Vendor-defined field specifying the loca-
tion to be read. The size of the address
must match the address space supported
by the target or tool.

3 DSZ Vendor-fixed

See Table 5-24 for recommended data
size encodings for targets that implement
this field. Note: A target/tool does not need
to support all of the data sizes listed in the
table.

0 MAP Vendor-fixed

A number to indicate the memory map to
be used in the target/tool. For targets or
tools with only a single memory map, this
packet can be omitted.

6 TCODE Fixed Value = 22

Page 72 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
5.3.29 Memory Access - Write Target/Tool Message

Message Description: For embedded processors that implement vendor-defined
development registers (not NRRs) or MSM, the Memory Access - Write Target/
Tool Message provides a mechanism for writing memory locations within the
target or the tool.

Message Notes:

• The tool sends the Memory Access - Write Target/Tool Message when it
wants to write to a location in the target’s memory-mapped address
space

• The target sends the Memory Access - Write Target/Tool Message when
it wants to write to a location in the tool’s memory space.

Table 5-36—Memory Access - Write Target/Tool Message Format

Memory Access -
Write Target/Tool Message

Direction: from tool, from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

1 DATA Variable Write data value of size DSZ.

1 ADDRESS Variable

Vendor-defined field specifying the loca-
tion to be written. The size of the address
must match the address space supported
by the target or tool.

3 DSZ Fixed

See Table 5-24 for recommended data
size encodings for targets that implement
this field. Note: A target/tool does not need
to support all of the data sizes listed in the
table.

0 MAP vendor-fixed

A number to indicate the memory map to
be used in the target/tool. For targets or
tools with only a single memory map, this
packet can be omitted.

6 TCODE Fixed Value = 23
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 73 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
5.3.30 Memory Access - Read Next Target/Tool Data Message

Message Description: For embedded processors that implement vendor-defined
development registers (not NRRs) or MSM, the Memory Access - Read Next
Target/Tool Data Message provides a mechanism for reading consecutively
addressed data (block reads) within the target or tool.

Message Notes:

• The tool sends the Memory Access - Read Next Target/Tool Data
Message when it has processed a prior Memory Access - Target
Response Message and the tool’s receive buffer can accommodate
more read data.

• The target sends the Memory Access - Read Next Target/Tool Data
Message when it has processed a prior Memory Access - Tool
Response Message and the target’s receive buffer can accommodate
more read data.

• There is no limit to the amount of data that can be transferred using
consecutive read next target/tool data commands.

• Both tool and target are required to increment their internal address
pointers according to the size of the data being transferred.

Table 5-37—Memory Access - Read Next Target/Tool Data Message Format

Memory Access -
Read Next Target/Tool Data Message

Direction: from tool, from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

6 TCODE Fixed Value = 24

Page 74 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
5.3.31 Memory Access - Write Next Target/Tool Data Message

Message Description: For embedded processors that implement vendor-defined
development registers (not NRRs) or MSM, the Memory Access - Write Next
Target/Tool Data Message provides a mechanism for writing consecutively
addressed data (block writes) within the target or tool.

Message Notes:

• The tool sends the Memory Access - Write Next Target/Tool Data
Message to write to the next consecutively addressed location in the
target after it has processed a prior Memory Access - Target Response
Message and has more data available to send.

• The target sends the Memory Access - Write Next Target/Tool Message
to write to the next consecutively addressed location within the tool after
it has processed a prior Memory Access - Tool Response Message and
has more data available to send.

• There is no limit to the amount of data that can be transferred using
consecutive write next target/tool data commands.

• Both tool and target are required to increment their internal address
pointers according to the size of the data being transferred.

Table 5-38—Memory Access - Write Next Target/Tool Data Message Format

Memory Access -
Write Next Target/Tool Data Message

Direction: from tool, from target

Minimum
Packet Size
(bits)

Packet Name Packet Type Description

8 DATA Variable

Write data value, the size of which is
determined by the DSZ packet in the most
recent Memory Access - Write Target/Tool
Message.

6 TCODE Fixed Value = 25
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 75 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
5.3.32 Memory Access - Target Response Message

Message Description: For embedded processors that implement vendor-defined
development registers (not NRRs), the Memory Access - Target Response
Message is output by the target, but the contents differ depending on whether the
most recent read/write command issued by the tool was contained in a Memory
Access - Read Target Message or a Memory Access - Write Target Message.

Message Notes:

• For read commands, the target sends a Memory Access - Target
Response Message (containing data) as soon as it has retrieved the
data requested by a previous Memory Access - Read Target Message or
Memory Access - Read Next Target Data Message from the tool.

• For write commands, the target sends a Memory Access - Target
Response Message (with no data) as soon as the target’s receive buffer
is able to accept more data from the tool.

• If the target is unable to process the function requested by the previous
Memory Access - Read Target Message, Memory Access - Write Target
Message, Memory Access - Read Next Target Data Message, or
Memory Access - Write Next Target Data Message, it sends a Memory
Access - Target Response Message with the status (ST) field = 01.

Table 5-39—Memory Access - Target Response Message Format

Memory Access -
Target Response Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

8 DATA Variable

Read data, the size of which is determined by the
DSZ packet in the most recent Memory Access -
Read Target Message.

This field does not exist if the previous message
issued by the tool was a Memory Access - Write
Target Message or if the target is unable to com-
plete the previously requested read operation.

2 ST Fixed

Status
00 = The previously requested read/write operation
is able to be processed normally.
01 = The previously requested read/write operation
cannot be completed.
1x = Reserved for future use.

6 TCODE Fixed Value = 26

Page 76 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
5.3.33 Memory Access - Tool Response Message

Message Description: For embedded processors that implement vendor-defined
development registers (not NRRs) or MSM, the Memory Access - Tool Response
Message is output by the tool, but the contents differ depending on whether the
most recent read/write command issued by the target was contained in a Memory
Access - Read Tool Message or a Memory Access - Write Tool Message.

Message Notes:

• For read commands, the tool sends a Memory Access - Tool Response
Message (containing data) as soon as it has retrieved the data
requested by a previous Memory Access - Read Tool Message or
Memory Access - Read Next Tool Data Message from the target.

• For write commands, the tool sends a Memory Access - Tool Response
Message (with no data) as soon as the tool’s receive buffer is able to
accept more data from the target.

• If the tool is unable to process the function requested by the previous
Memory Access - Read Tool Message, Memory Access - Write Tool
Message, Memory Access - Read Next Tool Data Message, or Memory
Access - Write Next Tool Data Message, it sends a Memory Access -
Tool Response Message with the ST field = 01.

• To support MSM, in which code that is normally fetched from target
memory is instead fetched from tool memory, the tool must be able to
inform the target when to stop requesting data (i.e., the tool determines
when the substitution process should end). The tool informs the target
not to request more data by setting the ST field = 10 in the Memory
Access - Tool Response Message that contains the final read data.

Table 5-40—Memory Access - Tool Response Message Format

Memory Access -
Tool Response Message

Direction: from tool

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

8 DATA Variable

Read data, the size of which is determined by the
DSZ packet in the most recent Memory Access -
Read Tool Message.

This field does not exist if the previous message
issued by the target was a Memory Access - Write
Tool Message or if the tool is unable to complete
the previously requested read operation.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 77 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
5.4 NRR Access Messages - Example Sequences

The examples in Table 5-41 through Table 5-44 use the NRRs concatenated as
defined in Section B.9 - NRRs Concatenated for Better Transfer Efficiency via
the AUX.

Table 5-41 outlines the sequence of messages when the development tool
requests debug status information from the target.

Table 5-42 outlines the sequence of messages when the development tool sends
a debug command to the target.

2 ST Fixed

Status
00 = The previously requested read/write operation
is able to be processed normally.
01 = The previously requested read/write operation
cannot be completed.
10 = Memory substitution transfer complete.
11 = Reserved for future use.

6 TCODE Fixed Value = 26

Table 5-41—Target Debug Status Requested by Tool

Step # Description of Action

1 Tool sends NRR Access - Read Register Message.

2 Target sends NRR Access - Read/Write Response Message.

Table 5-42—Debug Command Sent by Tool to Target

Step # Description of Action

1 Tool sends NRR Access - Write Register Message.

2 Target sends NRR Access - Target Ready Message.

Table 5-40—Memory Access - Tool Response Message Format (Continued)

Memory Access -
Tool Response Message

Direction: from tool

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

Page 78 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
Table 5-43 outlines the sequence of messages when the tool initiates a block
write transfer.

Table 5-44 outlines the sequence of messages when the tool initiates a block
read transfer.

NOTE
The tool should be able to keep up with the transfer rate of the target for
block reads. If the tool does not contain this capability, block reads
should not be requested.

5.5 Memory Access Messages - Example Sequences

The following read/write sequences show how the AUX is used by a tool to access
target memory space (Read/Write Access Messaging) and by a target to access
tool memory space (MSM).

Table 5-43—Block Write Command Issued by Tool

Step # Description of Action

1
Tool sends NRR Access - Write Register Message (includes first write data,
block write attributes, & RW = 1).

2 Target sends NRR Access - Target Ready Message.

3 Tool sends NRR Access - Read/Write Response Message (next write data).

4 Target sends NRR Access - Target Ready Message.

5 Tool sends NRR Access - Read/Write Response Message (next write data).

6 Target sends NRR Access - Target Ready Message.

7 Tool continues sequence until # words of data have been transferred.

Table 5-44—Block Read Command Issued by Tool

Step # Description of Action

1
Tool sends NRR Access - Write Register Message (includes block read
attributes, & RW = 0).

2 Target sends NRR Access - Read/Write Response Message (first read data).

3 Target sends NRR Access - Read/Write Response Message (next read data).

4 Target sends NRR Access - Read/Write Response Message (next read data).

5 Target continues sequence until # words of data have been transferred.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 79 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
5.5.1 Tool Accessing Target

Table 5-45 through Table 5-49 as well as Figure 5-2 show the sequences of
messages sent between a tool and a target when the tool wants to read or write
memory-mapped address space in the target. To achieve maximum transfer
performance, Read Next Target Data Messages or Write Next Target Data
Messages should be used wherever possible because these messages have the
shortest length.

Table 5-45—Reading Consecutively Addressed Target Locations

Step # Description of Action

1 Tool sends Memory Access - Read Target Message.

2 Target sends Memory Access - Target Response Message (includes data).

3 Tool sends Memory Access - Read Next Target Data Message.

4 Target sends Memory Access - Target Response Message (includes data).

5 Tool sends Memory Access - Read Next Target Data Message.

6 Target sends Memory Access - Target Response Message (includes data).

Table 5-46—Writing Consecutively Addressed Target Locations

Step # Description of Action

1 Tool sends Memory Access - Write Target Message.

2 Target sends Memory Access - Target Response Message (includes data).

3 Tool sends Memory Access - Write Next Target Data Message.

4 Target sends Memory Access - Target Response Message (includes data).

5 Tool sends Memory Access - Write Next Target Data Message.

6 Target sends Memory Access - Target Response Message (includes data).

Table 5-47—Reading Randomly Addressed Target Locations

Step # Description of Action

1 Tool sends Memory Access - Read Target Message.

2 Target sends Memory Access - Target Response Message (includes data).

3 Tool sends Memory Access - Read Target Message.

4 Target sends Memory Access - Target Response Message (includes data).

5 Tool sends Memory Access - Read Target Message.

6 Target sends Memory Access - Target Response Message (includes data).

Page 80 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
Because trace messages do not need to be acknowledged by the tool, these
messages can be output when the AUX OUT is not transmitting other messages.
Figure 5-2 shows how the read/write protocol and trace messages can co-exist.
This figure also demonstrates that the AUX is full-duplex, that is, messages can
occur in both directions simultaneously.

NOTE
Protocol responses from the target should not pass through the same
output queue as trace messages. As soon as a protocol response has
been prepared by the target, it must be transmitted immediately
following any trace message currently being transmitted, regardless of
the number of other trace messages queued for output.

Table 5-48—Writing Randomly Addressed Target Locations

Step # Description of Action

1 Tool sends Memory Access - Write Target Message (includes data).

2 Target sends Memory Access - Target Response Message.

3 Tool sends Memory Access - Write Target Message (includes data).

4 Target sends Memory Access - Target Response Message.

5 Tool sends Memory Access - Write Target Message (includes data).

6 Target sends Memory Access - Target Response Message.

Table 5-49—Intermixed Reading/Writing Randomly Addressed
Target Locations

Step # Description of Action

1 Tool sends Memory Access - Read Target Message.

2 Target sends Memory Access - Target Response Message (includes data).

3 Tool sends Memory Access - Write Target Message (includes data).

4 Target sends Memory Access - Target Response Message.

5 Tool sends Memory Access - Write Target Message (includes data).

6 Target sends Memory Access - Target Response Message.

7 Tool sends Memory Access - Read Target Message.

8 Target sends Memory Access - Target Response Message (includes data).
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 81 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
5.5.2 Target Accessing Tool

A target uses the same Memory Access Messages and sequences as described
in 5.5.1 - Tool Accessing Target to access memory space within a tool, except
that all messages occur in the reverse direction. To understand the protocol,
simply swap the Tool and Target names on all the protocol sequences in Table 5-
45 through Table 5-49.

Memory Access - Read Tool Messages and Memory Access - Write Tool
Messages include an optional Map packet for use in situations where multiple
memory maps are supported by the tool. These alternative memory maps may be
used to select different address spaces within the tool, such as

• Target boot image

• Debug exception handler

• Read/write data space

To support MSM, in which code that is normally fetched from target memory is
instead fetched from tool memory, the tool must be able to inform the target when
to stop requesting data, i.e., the tool determines when the substitution process
should end. Memory substitution will typically be initiated by a target watchpoint
match and will be terminated by the tool. The tool informs the target not to request
more data by setting the ST field = 10 in the response message that contains the
final read data.

Read Target

Target Response
(includes data)

Read Next
Target Data

Target

Tool

Target

Tool
Read Next
Target Data

Target Response
(includes data)

Target Response
(includes data)

Trace
Message

Trace
Message

Trace
Message

Trace
Message

Trace
Message

Figure 5-2—Trace Messages Intermixed with Read Target Locations

Page 82 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
Read/Write Access Messaging can occur in both directions simultaneously. For
example, a tool may initiate read/write access to the target without affecting any
target-to-tool transfer of data currently in progress. In other words, both the tool
and the target must have sufficient receive buffer space to support two messages,
a request from the other device and the response to a request.

5.5.3 Termination of Tool/Target Messaging

When large blocks of data are being read, the tool requests the next data word
(when its buffer is able to accept more data) by issuing a Read Next Target Data
Message. For block writes, the tool sends the next data word after it receives
acknowledgment from the target that the target is ready to accept more data.

The tool controls the transfer process. The target has no prior knowledge of the
amount of data to be transferred; the tool stops the process by not sending any
more Memory Access - Read Next Target Data Messages or Memory Access -
Write Next Target Data Messages. The target simply increments an address
counter each time it receives a Memory Access - Read Next Target Data Message
or Memory Access - Write Next Target Data Message. This address counter is
automatically changed to a new value whenever another Memory Access - Read
Target Message or Memory Access - Write Target Message is received.

During the transfer of a large block of data using Memory Access - Read Next
Target Data Message or Memory Access - Write Next Target Data Message, the
target may determine that it is unable to continue supplying read data or accepting
write data. This could happen if the incrementing address points to nonexistent
memory or to a protected memory area. Upon detecting such a condition, the

Read Target

Target Response
(includes data)

Read Next
Tool Data

Target

Tool

Target

Tool

Target Response
Trace

Message

Read Tool

Tool Response
(includes data)

Trace
Message

Write Target
(includes data)

Tool Response
(includes data)

Trace
Message

Trace
Message

Read Next
Tool Data

Tool Response
(includes data)

Trace
Message

Trace
Message

Figure 5-3—Simultaneous Read/Write Accesses by Tool and Target
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 83 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
target issues a Memory Access - Target Response Message with the ST field =
0b01 (meaning that the previously requested read/write operation cannot be
completed). The tool stops sending any more Memory Access - Read Next Target
Data Messages or Memory Access - Write Next Target Data Messages and may
then perform some recovery or error notification tasks.

Page 84 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
SECTION 6
Nexus Port Signals

Embedded processors complying with Class 2, 3, or 4 shall provide the
appropriate pin functions as shown in Table 6-1. Required and optional pin
functions are designated by “R” and “O” respectively. Pins not allowed for an
interface are shaded.

Table 6-1—Nexus Pin Functions Required per Interface Type

Pin Type

D
ir

ec
ti

o
n

F
u

ll-
d

u
p

le
x

(A
U

X
 IN

/A
U

X
 O

U
T

)

 F
u

ll-
d

u
p

le
x

w
/IE

E
E

 1
14

9.
1

H
al

f-
d

u
p

le
x

w
/IE

E
E

 1
14

9.
1

MCKI In R

RSTI In R

MDI In R

MSEI In R

MCKO Out R R

MDO Out R R

MSEO Out R R

EVTI In R O O

EVTO Out O O O

TCK In R R

TDI In R R

TDO Out R R

TMS In R R

TRST In O O

RDY Out O O
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 85 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
NOTE
The MCKO functions may be provided via a system CLOCKOUT pin on
the embedded processor.

NOTE
For IEEE 1149.1 implementations (Full-Duplex or Half-Duplex), the EVTI
pin is optional. However, tool-initiated message synchronization and
breakpoint generation functionality defined by the Nexus standard are
lost if the pin is not implemented.

6.1 IEEE 1149.1 Pin Functions

The IEEE 1149.1 pins are described in Table 6-2.

Table 6-2—IEEE 1149.1 Pins

IEEE 1149.1
Pin

Pin Description

TDI
Test Data Input (TDI) is an input pin that provides for serial movement of data into the
IEEE 1149.1 port.

TDO
Test Data Output (TDO) is an output pin that provides for serial movement of data out of
the IEEE 1149.1 port. All target accesses initiated via the IEEE 1149.1 port should be
transmitted by the target via TDO (not via AUX OUT).

TCK Test Clock (TCK) is an input pin that provides the clock for the IEEE 1149.1 port.

TMS
Test Mode Select (TMS) is an input pin that provides access to the IEEE 1149.1 TAP
state machine.

TRST
Test Reset (TRST) is an optional pin that provides for asynchronous initialization of the
IEEE 1149.1 controller.

RDY
Ready (RDY) is an optional output pin used to accelerate data accesses through the
IEEE 1149.1 port (Refer to 8.1.2 - Optional Ready (RDY) Output Pin).

Page 86 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
6.2 Nexus Auxiliary Pin Functions

The auxiliary pin functions are described in Table 6-3.

6.3 Sample Port Implementations

For a full-duplex AUX with IEEE 1149.1 pins, a minimum of two auxiliary pins are
required for compliance [Message Data Out (MDO) and Message Start/End Out
(MSEO)], assuming a system clockout pin can be used for MCKO. EVTI is also
recommended for tool-initiated synchronization. The performance classification,
however, would also be minimal and may meet the transfer bandwidth
requirements for only low-end applications or lower compliance classifications.

Table 6-3—Auxiliary Pins

Auxiliary
Pins

Description of Auxiliary Pins

MCKO

Message Clockout (MCKO) is a free-running output clock to development tools for timing
MDO and MSEO pin functions. MCKO can be independent of the embedded processor’s
system clock (CLOCKOUT). An embedded processor’s CLOCKOUT pin may be used as
a functional equivalent for MCKO.

MDO[M:0]

Message Data Out (MDO[M:0]) are output pin(s) used for OTM, BTM, DTM, reads, mem-
ory substitution accesses, etc. External latching of MDO shall occur on the rising edge of
MCKO (or system clock). Depending upon bandwidth requirements, one, two, four, eight,
or more pins may be implemented.

MSEO[1:0]

Message Start/End Out (MSEO [1:0]) are output pins that indicate when a message on
the MDO pins has started, when a variable-length packet has ended, and when the mes-
sage has ended. Only one MSEO pin is required, but up to two pins may be implemented
for more efficient transfers. External latching of MSEO shall occur on the rising edge of
MCKO (or system clock).

MCKI
Message Clockin (MCKI) is a free-running input clock from development tools for timing
MDI and MSEI pin functions. MCKI can be independent of the embedded processor’s
system clock.

MDI[N:0]

Message Data In (MDI[N:0]) are input pin(s) used for downloading configuration informa-
tion, writes to user resources, etc. Internal latching of MDI shall occur on the rising edge
of MCKI. Depending upon bandwidth requirements, one, two, four, eight, or more pins
may be implemented.

MSEI[1:0]

Message Start/End In (MSEI [1:0]) are input pins that indicate when a message on the
MDI pins has started, when a variable-length packet has ended, and when the message
has ended. Only one MSEI pin is required, but up to two pins may be implemented for
more efficient transfers. Internal latching of MSEI shall occur on the rising edge of MCKI.

EVTI
Event In (EVTI) is an input pin where, when a high-to-low transition occurs, a processor is
halted (breakpoint) or Program/Data Messages with synchronization are transmitted from
the embedded processor.

RSTI Reset In (RSTI) is a pin for resetting the Nexus port resources.

EVTO

Event Out (EVTO) is an optional output pin to development tools indicating exact timing
for a single breakpoint status indication. Upon a breakpoint occurrence of the pro-
grammed breakpoint source, EVTO is asserted for a minimum of one clock period of
MCKO.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 87 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
The Nexus standard allows for additional transfer bandwidth with a scalable pin
interface or transfer rate, as illustrated by the examples in Table 6-4.

Table 6-4—Example of AUX OUTs

Number of Pins for Each Example

Comments
MDO MSEO MCKO EVTI

Total
Pins

1 1

0

0

2
Base implementation (IEEE 1149.1 and
Auxiliary)

2 1 3 2X faster than base implementation

4 1 5 4X faster than base implementation

4 2 6 1 clock faster per transfer

8 2 10 > 8X faster than base implementation

1 1

1

3

Independent clock allows for faster or slower
transfer rate than with system clock reference.

2 1 4

4 1 6

4 2 7

8 2 11

1 1

0

1

3 Base implementation (Auxiliary only)

2 1 4 2X faster than base implementation

4 1 6 4X faster than base implementation

4 2 7 1 clock faster per transfer

8 2 11 > 8X faster than base implementation

1 1

1

4

Independent clock allows for faster or slower
transfer rate than with system clock reference.

2 1 5

4 1 7

4 2 8

8 2 12

Page 88 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
SECTION 7
AUX Message Protocol

The protocol for the embedded processor to receive and transmit messages via
the auxiliary pins shall be accomplished with the Message Start/End In (MSEI)
and MSEO pin functions, respectively. A minimum of one and a maximum of two
MSEI pins shall provide the protocol for the embedded processor to receive
messages, and a minimum of one and a maximum of two MSEO pins shall
provide the protocol for the embedded processor to transmit messages.

The MSEI/MSEO protocol comprises the following:
• Two “1”s followed by one “0” to indicate the start of a message.
• “0” followed by two or more “1”s to indicate the end of a message.
• “0” followed by “1” followed by a “0” to indicate the end of a variable-

length packet.
• “0”s at all other clocks during transmission of a message
• “1”s at all clocks during no message transmission (idle)

The same sequence is followed when using one or two MSEI/MSEO pins.
However, when using two MSEI/MSEO pins, it is possible for two sequences to
occur on the same clock.

MSEI/MSEO is used to signal the end of variable-length packets but not vendor-
fixed or fixed-length packets. MSEI/MSEO are sampled on the rising edge of
Message Clockin (MCKI)/MCKO.

Table 7-1—MSEO Pin(s) Protocol

MSEO Function Single MSEO data (serial) Dual MSEO data

Start of message 1-1-0 11-00

End of message 0-1-1-(more 1s) 00 (or 01)-11-(more 11s)

End of variable-length packet 0-1-0 00-01

Message transmission 0s 00s

Idle (no message) 1s 11s
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 89 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
Figure 7-1 illustrates the state diagram for one-pin MSEI/MSEO transfers. When
using only one MSEI/MSEO pin, the “End Message” state does not contain valid
data on the Message Data In (MDI)/MDO pins. Also, it is not possible to have two
consecutive “End Packet” Messages. This implies that the minimum packet size
for a variable-length packet is two times the number of MDI/MDO pins. This
ensures that a false end of message state is not entered by transmitting two
consecutive “1”s on the MSEI/MSEO pin before the actual end of message.

Idle

Start
Message

Normal
Transfer

End
Message

MSE=1

MSE=1

MSE=0

MSE=0

MSE=1

MSE=1
MSE=0

MSE=0

MSE=0MSE=1

MDI/O: Invalid

MDI/O: Invalid

Not Allowed

End
Packet

MSE represents MSEI or MSEO
MDI/O represents MDI or MDO

Figure 7-1—One-pin MSEI/MSEO Transfers

Page 90 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
Figure 7-2 illustrates the use of two-pin MSEO transfers. The two-pin MSEI/
MSEO option is more efficient than the single pin option. Termination of the
current message may immediately be followed by the start of the next message
on the consecutive clock. An extra clock to end the message is not necessary as
with the one-pin MSEI/MSEO option. The two-pin option also allows for
consecutive “End Packet” states. This can be an advantage when small, variable-
sized packets are transferred.

Idle

Normal
Transfer

End
Message

MSE=11

MSE=11

MSE=00

MSE=00

MSE=01

MSE=01

MSE=00

MSE=00

MSE=00MSE=11

MDO: Invalid

MSE=01

End
Packet

MSE=11

MSE=11
MSE=10

Start
Message

MSE=01

MSE=01

MSE=10

MSE=10

MSE represents MSEI or MSEO
MDI/O represents MDI or MDO

Notes:
1—The variable port size for MDO and MSE allows for increased transfer rates per clock.
2—The one-pin MSE option should be selected when pin count is the most critical factor in the system and
performance is not a priority.
3—The two-pin MSE option should be chosen when performance is the top priority and pin count is
secondary.

Figure 7-2—Two-Pin MSEI/MSEO Transfers
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 91 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
NOTE
The “End Message” state may indicate the end of a variable-length
packet as well as the end of the message when using the two-pin option.

Figure 7-3 illustrates the transfer protocol for the Indirect Branch Message. For
purposes of illustration only, one MDO pin and one MSEO pin are shown. MDO
and MSEO are sampled on the rising edge of MCKO.

7.1 Rules for Messages

Embedded processors complying with Class 2, 3, or 4 shall provide messages via
the AUX in a consistent manner as described below:

• A variable-sized packet within a message must end on a port boundary.

• Whenever a variable-length packet is sized so that it does not end on a
port boundary, it is necessary to extend and zero-fill the remaining bits
after the highest-order bit so that it can end on a port boundary.

For example, if the MDO port is 4 bits wide, and the unique portion of an
indirect address TCODE is 5 bits, then the remaining 3 bits of MDO must
be packed with 0s.

TCODE Branch
Target

MDO

Number of Retired
Instructions

Indirect Branch

(Output)

(Output)

Client
ID

(variable length) (variable length)

MSEO

MCKO (Output)

Figure 7-3—Timing Diagram for Indirect Branch Message

Page 92 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
• A variable-sized packet may start within a port boundary only when
following a fixed-length packet. (If two variable-sized packets end and
start on the same clock, it is impossible to know which bit is from the last
packet and which bit is from the next packet.)

• Processors that do not have A0 and/or A1 address bits must be
consistent in their representation of address values within all messages.
That is, bits A0/A1 must always be included or excluded from all Public
Messages.

• To improve message compression, multiple vendor-fixed or fixed-length
packets may start and end on a single clock.

• Each type of vendor-fixed or fixed-length packet must be the same
within all messages. For example, if a vendor implements 3 bits to
identify the source processor, then all Public Messages with a source
processor packet must be 3 bits in length.

• When a vendor-fixed or fixed-length packet follows a variable sized
packet, the vendor-fixed or fixed-length packet must start on the port
boundary.

• MSEI/MSEO protocol must be followed for both input and output
messages.

7.2 Example AUX Messages Using Nexus Protocol

Table 7-2 and Table 7-3 illustrate examples of one-pin and two-pin MSEO options
for the same Indirect Branch Message (Traditional).

Note that T0 and S0 are the LSBs where

Tx = TCODE number
Sx = Client that is source of message
Ix = Number of instruction units
Ax = Unique portion of the address

Clock MDO[3:0] MSEO[1:0]

3 2 1 0 1 0

0 A3 A2 A1 A0 0 0 Normal Transfer

1 0 0 0 A4 0 1 End Packet
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 93 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
Table 7-2—Indirect Branch Using the One-Pin MSEO Option

Clock MDO[3:0] MSEO[0]

3 2 1 0 0 Idle

0 X X X X 1
Idle (or end of
last message)

1 T3 T2 T1 T0 0 Start Message

2 S1 S0 T5 T4 0 Normal Transfer

3 I3 I2 I1 I0 0 Normal Transfer

4 I7 I6 I5 I4 1 End Packet

5 A3 A2 A1 A0 0 Normal Transfer

6 A7 A6 A5 A4 1 End Packet

7 X X X X 1 End Message

8 T3 T2 T1 T0 0 Start Message

Table 7-3—Indirect Branch Using the Two-Pin MSEO Option

Clock MDO[3:0] MSEO[1:0]

3 2 1 0 1 0

0 X X X X 1 1
Idle (or end of
last message)

1 T3 T2 T1 T0 0 0 Start Message

2 S1 S0 T5 T4 0 0 Normal Transfer

3 I3 I2 I1 I0 0 0 Normal Transfer

4 I7 I6 I5 I4 0 1 End Packet

5 A3 A2 A1 A0 0 0 Normal Transfer

6 A7 A6 A5 A4 1 1
End Packet/

Message

7 T3 T2 T1 T0 0 0 Start Message

Page 94 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
SECTION 8
IEEE 1149.1 Message Protocol

Embedded processors complying with Class 1, 2, 3, or 4 may optionally
implement messages via the IEEE 1149.1 interface according to the Nexus
standard.

Two basic categories of messages may be implemented: solicited and unsolicited.
Solicited messages are initiated and transmitted from an external controller to the
embedded processor (e.g., to read an NRR). Unsolicited messages are generated
by the embedded processor and are normally transmitted at random times.
Unsolicited messages are most commonly transmitted via the AUX; however, a
mechanism is described in 8.4.2 - Nexus Public Message Access Protocol that
allows for the retrieval of unsolicited messages via an IEEE 1149.1 interface.

8.1 IEEE 1149.1 Compatibility

An IEEE 1149.1 port used for the Nexus standard shall implement all the
mandatory features of a standard IEEE 1149.1 port, including the “BYPASS” and
“IDCODE” instructions. A 16-state IEEE 1149.1 TAP state machine will be used
per the IEEE-1149.1 standard as illustrated in Figure 8-1.

Refer to IEEE Std 1149.1-1990 for further details on electrical and pin protocol
compliance requirements. Additional information on the IEEE 1149.1 pin interface
to connectors may be found in Appendix A - Connector and Electrical
Specifications. Details on the NRRs may be found in Appendix B -
Recommendations for Access to Control and Status Registers.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 95 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
Figure 8-1—Sixteen-State IEEE 1149.1 Finite State Machine

8.1.1 Accessing the IEEE 1149.1 Device ID

Assertion of a power-on-reset signal on the embedded processor or the TRST pin
causes the IEEE 1149.1 controller to default to being loaded with the “IDCODE”
instruction upon exit of TEST-LOGIC-RESET controller state. This allows
immediate entry to the SELECT-DR_SCAN path to retrieve the contents of the
device ID. The LSB of the IDCODE must be a logic 1 so that examination of the
first bit of data shifted out of a component during a data scan sequence

TEST LOGIC

RESET

RUN-TEST/IDLE SELECT-DR_SCAN

CAPTURE-DR

SHIFT-DR

EXIT1-DR

PAUSE-DR

EXIT2-DR

UPDATE-DR

SELECT-IR_SCAN

SHIFT-IR

EXIT1-IR

PAUSE-IR

EXIT2-IR

0 0

0

0

1

1

1

0 0

0

0

1

111

1

0

0

1

1

11

0

0

00

0

1 1

11

0

(Nexus Resource
To shifter)

CAPTURE-IR
(JTAG Cmd Reg

To shifter)

(Shifter to Nexus
Resource)

UPDATE-IR
(Shifter to JTAG

Cmd Reg)

Page 96 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
immediately following exit from the TEST-LOGIC-RESET controller state will
show whether an IEEE 1149.1 DID Register is included in the design. The debug/
development tool may then retrieve the characteristics of the device to configure
the software interface.

The system logic shall continue its normal operation undisturbed when the IEEE
1149.1 controller is decoding the “IDCODE” instruction. All NRRs must be
accessible through the IEEE 1149.1 port independent of the state of the target
processor.

8.1.2 Optional Ready (RDY) Output Pin

To increase the transfer rate of the IEEE 1149.1 port, an additional pin may be
implemented to signal when data are ready to be transferred to and from NRRs.
This may eliminate the need to poll NRRs for status information for
synchronization purposes. This capability becomes especially important when
performing read/write access transfers to different speed target memories.

The function of the RDY pin will be to assert (asynchronously) to a logic low
whenever the read/write access transfer has completed without error and then de-
assert when the IEEE 1149.1 state machine has reached the CAPTURE_DR
state.

The RDY pin may also be used for Nexus Public Messages as described in 8.4 -
Accessing Nexus Public Messages via the IEEE 1149.1 Port.

8.2 Accessing NRRs via the IEEE 1149.1 Port

In order to reduce the number of additional debug/development pins required for
dynamic (real-time) debug, the Nexus standard defines an alternative mechanism
to accessing NRRs via the IEEE 1149.1 port. This is especially useful for
embedded processors that implement IEEE 1149.1 pins for static debug and/or
boundary scan.

The mechanism defined in this section can be used in lieu of implementing the
Read/Write Register Messages defined in SECTION 5 - Nexus Public
Messages.

8.2.1 NRR Access Protocol

Access to NRRs is enabled when the IEEE 1149.1 controller is decoding a
vendor-defined “NEXUS-ACCESS” instruction entered via the SELECT-IR_SCAN
path. When the IEEE 1149.1 controller passes through the UPDATE_IR state and
decodes the “NEXUS-ACCESS” instruction, the Nexus controller will be reset to
the NRR select state. The Nexus controller will have three states: idle
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 97 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
(NRR_IDLE), register select state (NRR_REG_SEL), and register data access
state (NRR_DATA_ACC).

NOTE
The “NEXUS-ACCESS” instruction can also be used to enable the
Nexus module for low-cost (IEEE 1149.1 only) implementations that may
not implement the EVTI pin. Refer to 9.1.2 - Reset for IEEE 1149.1
Implementations.

When the “NEXUS-ACCESS” instruction is being decoded by the IEEE 1149.1
controller, the IEEE 1149.1 port allows tool/target communications via up to 128
NRRs. Each NRR is referenced by a unique register address index in the range 0
through 127. Refer to Appendix B - Recommendations for Access to Control
and Status Registers for specific register indices.

All communication with the Nexus controller is performed via the SELECT-
DR_SCAN path. The Nexus controller will default to a register select state when
enabled. Accessing an NRR requires two passes through the SELECT-DR_SCAN
path, one pass to select the NRR and the second pass to read or write the NRR
data.

The first pass through the SELECT-DR_SCAN path is used to enter an 8-bit Nexus
command consisting of a read/write control bit in the LSB followed by a 7-bit NRR
address, as illustrated in Figure 8-2.

Figure 8-2—IEEE 1149.1 Controller Command Input

The second pass through the SELECT-DR_SCAN path is used to read or write
the NRR data by shifting in the data LSB first during the SHIFT-DR state. When
reading an NRR, the register value will be loaded into the IEEE 1149.1 shifter
during the CAPTURE-DR state. When writing to an NRR, the value will be loaded
by the IEEE 1149.1 shifter to the NRR during the UPDATE-DR state.

NOTE
When reading data from an NRR, there is no requirement to shift out the
entire NRR contents, and shifting may be terminated once the required
number of bits has been acquired. Figure 8-3 illustrates the relationship
between an IEEE 1149.1 TAP state machine and a Nexus controller
state machine.

7 bit NRR Address R/W
LSBMSB

Page 98 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
Figure 8-3—IEEE 1149.1 TAP State Machine Relationship to
Nexus Controller State Machine

8.2.2 NRR Access Status (Optional)

In order to reduce the number of clock cycles required to poll registers to retrieve
status information, an additional (optional) IEEE 1149.1 instruction has been
added. The access to this vendor-defined “NEXUS-STATUS” instruction will be
identical to that of the “NEXUS-ACCESS” instruction.

A minimum of two status bits are recommended in the standard: 1 bit to indicate
an error condition on DMA accesses (equivalent to the ERR bit within the Nexus-
recommended RWCS Register) and 1 bit to indicate the pending status of a
Nexus access. The LSBs of the “NEXUS-STATUS” instruction must remain 0b01
to comply with IEEE 1149.1 interconnect testing requirements.

For both DMA accesses and normal register accesses, a synchronization busy
(SB) bit is recommended to indicate to the tool that the outstanding access has
not completed. This bit has the same function as the RDY pin, but the opposite
polarity.

When performing a DMA access, an error condition will set the error status (ERR)
bit. The ERR bit will remain asserted until a new access is initiated.

These status bits allow the IEEE 1149.1 controller to simply access the “NEXUS-
STATUS” Instruction Register (IR) value and eliminate the required polling of the
RWCS Register.

NOTE
The width of the IEEE 1149.1 IR is vendor-defined, but it is
recommended to be at least 4 bits wide to facilitate the addition of the
SB and ERR bits.

NRR_REG_SEL

NRR_DATA_ACC

UPDATE-DR=1 UPDATE-DR=1NEXUS-ACCESS

NEXUS-ACCESS=0

NRR_IDLE

NEXUS-ACCESS=1TEST-LOGIC-RESET=1

UPDATE-IR=1and
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 99 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
8.3 Read/Write Access via the IEEE 1149.1 Port

The read/write access registers, as described in Appendix B -
Recommendations for Access to Control and Status Registers, provide a
means for transferring single or multiple data values through the AUX or IEEE
1149.1 port. When using the IEEE 1149.1 port, the RWCS Register and RWA
Register are initialized for the data transfer. Once initialization is complete,
synchronization with the target must be handled by an external target controller.

Two methods will be available for synchronization of data transfers. The first
method uses an optional pin called Ready for Transmission (RDY). The RDY
signal asserts (asynchronously) to indicate that the Nexus module is ready for
read access or that the write access has completed without error. An external
development tool may then clock the IEEE 1149.1 port and perform the next read/
write access. Use of a RDY pin permits data transfers in [16 + (data width)] TCKs,
assuming the IEEE 1149.1 controller starts from and ends in the SELECT-
DR_SCAN state.

If a RDY pin is not made available, either the “NEXUS-STATUS” instruction must
be implemented, or the RWCS Register ERR and DV bits must be polled. The
polling method requires 65 TCKs for transfer of a 32-bit value.

8.4 Accessing Nexus Public Messages via the IEEE 1149.1 Port

Nexus Public Messages may be read from or written to the target via the IEEE
1149.1 port. The method outlined in 8.4.1 - Nexus Input/Output Public Message
Registers (IPMR/OPMR) through 8.4.3 - Using RDY as Output Message Flag
provides a low-cost solution for providing a basic set of Nexus functionality.

This method allows a Class 1 implementation to support Class 2 and Class 3
features (at a reduced bandwidth). The performance classification would be
minimal and may meet the transfer bandwidth requirements only for low-end
applications.

If the embedded processor supports messaging via the AUX OUT as well as the
IEEE 1149.1 port, the selection mechanism is vendor defined.

8.4.1 Nexus Input/Output Public Message Registers (IPMR/OPMR)

Input Messages are generated by an external IEEE 1149.1 controller and are
placed in an Input Public Message Register (IPMR). The IPMR receives its
TCODEs and packets via multiple passes through the SELECT-DR_SCAN path.

Output Messages are generated by the target processor. Because the IEEE
1149.1 protocol does not permit Public Messages to be generated from an
embedded target microcontroller, an Output Public Message Register (OPMR)

Page 100 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
must be made available for transmission of Public Messages from the embedded
target microcontroller to an external IEEE 1149.1 controller.

The IPMR and OPMR may be implemented as NRRs, as illustrated in
Appendix B - Recommendations for Access to Control and Status
Registers.

8.4.2 Nexus Public Message Access Protocol

The IPMR and OPMR are used to transmit Nexus Public Messages via the IEEE
1149.1 port instead of the AUX. These registers can be viewed as partitioned into
slots. Each slot contains a predetermined number of equivalent AUX bits and
MSE bits.

For an input message, these bits would be shifted into the IPMR and uploaded to
the target in the UPDATE-DR state. For an output message, these bits would be
loaded into the JTAG shifter during the CAPTURE-DR state and shifted out via
TDO. The number of AUX bits and MSE bits for each implementation is vendor
defined. Table 8-1 and Table 8-2 show an example 32-bit OPMR/IPMR
implemented using 6-bit and 14-bit AUX equivalents, as well as the two-pin MSE
option.

Table 8-1—IPMR/OPMR Register (6-bit AUX equivalent)

Bit Number Field Name Description

31-26 AUX3 AUX bits for “slot3”

25-24 MSE3 MSE bits for “slot3”

23-18 AUX2 AUX bits for “slot2”

17-16 MSE2 MSE bits for “slot2”

15-10 AUX1 AUX bits for “slot1”

9-8 MSE1 MSE bits for “slot1”

7-2 AUX0 AUX bits for “slot0”

1-0 MSE0 MSE bits for “slot0”

Table 8-2—IPMR/OPMR Register (14-bit AUX equivalent)

Bit Number Field Name Description

31-18 AUX1 AUX bits for “slot1”

17-16 MSE1 MSE bits for “slot1”

15-2 AUX0 AUX bits for “slot0”

1-0 MSE0 MSE bits for “slot0”
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 101 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
Messages are packetized and transmitted according to the Nexus standard, but
the slots stored within the IPMR/OPMR are treated as a serial stream of data. For
example, a Start Message slot (MSE = 00) can immediately follow an End
Message slot (MSE = 11) within the same IPMR/OPMR. If no more messages are
available, the remaining slots in the registers should be filled with idle slots.

Table 8-3 below shows a typical Indirect Branch Message using two-pin MSEO
and six-pin MDO. Table 8-4 shows how this AUX message is formatted for an
OPMR transmission via the IEEE 1149.1 port.

Table 8-3—Indirect Branch - AUX Example

Clock Slot AUX[5:0] MSEO[1:0]

5 4 3 2 1 0 0 Idle

0 X X X X X X X 11
Idle (or end of
last message)

1 0 T5 T4 T3 T2 T1 T0 00 Start Message

2 1 I3 I2 I1 I0 S1 S0 00 Normal Transfer

3 2 0 0 I7 I6 I5 I4 01 End Packet

4 3 A5 A4 A3 A2 A1 A0 00 Normal Transfer

5 0 0 0 0 0 A7 A6 11 End Message

6 1 0 0 0 0 0 0 11 Idle

7 2 0 0 0 0 0 0 11 Idle

8 3 T5 T4 T3 T2 T1 T0 00 Start Message

Table 8-4—Indirect Branch - OPMR Example

Bit Number Field Name OPMR Value (1st transfer) OPMR Value (2nd transfer)

31-26 AUX3 A5 A4 A3 A2 A1 A0 T5 T4 T3 T2 T1 T0

25-24 MSE3 00 00

23-18 AUX2 0 0 I7 I6 I5 I4 0 0 0 0 0 0

17-16 MSE2 01 11

15-10 AUX1 I3 I2 I1 I0 S1 S0 0 0 0 0 0 0

9-8 MSE1 00 11

7-2 AUX0 T5 T4 T3 T2 T1 T0 0 0 0 0 A7 A6

1-0 MSE0 00 11

Page 102 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
8.4.3 Using RDY as Output Message Flag

It is possible to detect when a Nexus Public Message is available in the OPMR.
This method will require the selection of the OPMR and monitoring of the RDY
pin. If RDY is a logic 1, the external IEEE 1149.1 controller may terminate OPMR
shifting. If the RDY is a logic 1, the Nexus controller will not advance to the
register data access state, but instead will stay in the register select state.

An Output Message is ready for retrieval when RDY is a logic 0 and the Nexus
controller will advance to the register data access state. The width of the OPMR
will be vendor defined, where the vendor may optimize the register size
depending upon the size of packets transmitted. Figure 8-1 illustrates the IEEE
1149.1 TAP state machine for accessing the Public Message registers as well as
other NRRs.

NOTE
If the “NEXUS-STATUS” instruction is implemented, the SB status bit
can also be used to indicate that a Nexus Public Message is available in
the OPMR.

8.5 Sample IEEE 1149.1 Access Sequences

Table 8-5 illustrates the IEEE 1149.1 sequence required to read the Device
IDCODE immediately after assertion of the TRST pin or after 5 TCKs with the
TMS pin at a logic 1.

Table 8-5—IEEE 1149.1 Sequence to Read Device IDCODE
After TRST Pin Assertion

Step TMS IEEE 1149.1 State Nexus State Description

1 1 TEST-LOGIC-RESET NRR_IDLE IEEE 1149.1 controller in reset state.

2 0 RUN-TEST-IDLE NRR_IDLE IDCODE loaded into IEEE 1149.1 IR.

3 1 SELECT-DR_SCAN NRR_IDLE

4 0 CAPTURE-DR NRR_IDLE Load Device ID into TDI/TDO shifter.

5 0 SHIFT-DR NRR_IDLE TDO active and IEEE 1149.1 shifter pre-
sents a 1 in LSB.

N–1 TCKs NRR_IDLE

6 1 EXIT1-DR NRR_IDLE Last bit of Device ID shifted out to TDO.

7 1 UPDATE-DR NRR_IDLE

8 0 RUN-TEST-IDLE NRR_IDLE IEEE 1149.1 controller ready for instruction.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 103 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard

Table 8-6 illustrates the IEEE 1149.1 sequence to select the Nexus controller.

Table 8-7 illustrates an IEEE 1149.1 sequence that will write a 32-bit value
to an NRR.

Table 8-6—IEEE 1149.1 Sequence to Initiate Nexus Communication

Step TMS IEEE 1149.1 State Nexus State Description

1 0 RUN-TEST-IDLE NRR_IDLE IEEE 1149.1 controller in reset state.

2 1 SELECT-DR_SCAN NRR_IDLE

3 1 SELECT-IR-SCAN NRR_IDLE

4 0 CAPTURE-IR NRR_IDLE Load last register select command into TDI/
TDO shifter.

5 0 SHIFT-IR NRR_IDLE TDO becomes active and the IEEE 1149.1
shifter is ready. Shift N-1 bits into TDI of size of
vendor-defined “NEXUS-ACCESS” instruction.N–1 TCKs

6 1 EXIT1-IR NRR_IDLE Last bit of Device ID shifted out to TDO.

7 1 UPDATE-IR NRR_REG_SEL IEEE 1149.1 controller decoder. Nexus control-
ler is forced to register select state.

8 0 RUN-TEST-IDLE NRR_REG_SEL Nexus controller enabled and ready to receive
commands.

Table 8-7—IEEE 1149.1 Sequence to Write to an NRR

Step TMS IEEE 1149.1 State Nexus State Description

1 0 RUN-TEST-IDLE NRR_REG_SEL IEEE 1149.1 controller in idle state.

2 1 SELECT-DR_SCAN NRR_REG_SEL

3 0 CAPTURE-DR NRR_REG_SEL IEEE 1149.1 shifter may be loaded with last
value of register being decoded by Nexus
controller or Nexus status information.

4 0 SHIFT-DR NRR_REG_SEL TDO becomes active, and NRR address
and write bit are shifted in through TDI.

7 TCKs NRR_REG_SEL

5 1 EXIT1-DR NRR_REG_SEL Last bit of NRR shifted into TDI.

6 1 UPDATE-DR NRR_REG_SEL Nexus controller decodes and selects
register.

7 1 SELECT-DR_SCAN NRR_DATA_ACC Second pass through SELECT-DR_SCAN.

8 0 CAPTURE-DR NRR_DATA_ACC IEEE 1149.1 shifter may be loaded with last
value of register being decoded by Nexus
controller or Nexus status information.

9 0 SHIFT-DR NRR_DATA_ACC TDO becomes active and outputs current
value of register while new value is shifted
in through TDI.N–1 TCKs NRR_DATA_ACC

10 1 EXIT1-DR NRR_DATA_ACC Last bit of NRR shifted out to TDO.

11 1 UPDATE-DR NRR_DATA_ACC Nexus controller writes value to register.

Page 104 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
12 0 RUN-TEST/IDLE NRR_REG_SEL IEEE 1149.1 controller returns to idle state
or may return to SELECT-DR_SCAN state
for new NRR register select.

Total number of TCKs = 49 in this example.

Table 8-8—IEEE 1149.1 Sequence for Read/Write Access with RDY Pin

Step TMS IEEE 1149.1 State Nexus State Description

1 1 SELECT-DR_SCAN NRR_REG_SEL Starting point of this example.

2 0 CAPTURE-DR NRR_REG_SEL IEEE 1149.1 shifter may be loaded with
last value of register being decoded by
Nexus controller or Nexus status informa-
tion.

De-assert RDY pin and set SB bit

3 0 SHIFT-DR NRR_REG_SEL TDO becomes active, and Nexus RWD
Register is selected for write. Data are then
shifted from TDI.7 TCKs NRR_REG_SEL

4 1 EXIT1-DR NRR_REG_SEL Last bit of Nexus RWD Register shifted
from TDI.

5 1 UPDATE-DR NRR_REG_SEL Nexus controller decodes and selects
register.

6 1 SELECT-DR_SCAN NRR_DATA ACC Second pass through SELECT-DR_SCAN.

Wait for RDY pin to be asserted or for SB bit to be cleared (read operation)

7 0 CAPTURE-DR NRR_DATA ACC IEEE 1149.1 shifter may be loaded with
last value of register being decoded by
Nexus controller or Nexus status informa-
tion.

De-assert RDY pin and set SB bit

8 0 SHIFT-DR NRR_DATA ACC TDO becomes active and outputs current
value of register while new value is shifted
in through TDI.N–1 TCKs NRR_DATA ACC

9 1 EXIT1-DR NRR_DATA ACC Last bit of NRR shifted out to TDO.

10 1 UPDATE-DR NRR_DATA ACC Nexus controller writes value to register.

11 1 SELECT-DR_SCAN NRR_REG_SEL IEEE 1149.1 controller returns to
SELECT-DR_SCAN state for new NRR
select.

Total number of TCKs = 48 in this example.

Wait for RDY pin to be asserted or for SB bit to be cleared (write operation)

The IEEE 1149.1 state machine can be taken either to the SELECT-DR_SCAN state if another operation is
pending or to the RUN-TEST-IDLE state.

Table 8-7—IEEE 1149.1 Sequence to Write to an NRR (Continued)

Step TMS IEEE 1149.1 State Nexus State Description
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 105 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard

Page 106 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
SECTION 9
Implementation Topics

9.1 Nexus Reset Configuration

Embedded processors complying with Class 2, 3, or 4 shall receive reset
configuration information according to the Nexus standard to completely enable/
disable message transmission on the AUX OUT. If message transmission is
enabled, output messages shall be transmitted normally. If message transmission
is disabled, auxiliary output pins shall be tied inactive (or three-stated) and no
messages shall be transmitted.

NOTE
If the system clock is used as the MCKO function, then it is not required
to tie inactive (or three-state) the system clock via reset configuration.

9.1.1 Reset for AUX-Only (Full-Duplex) Implementations

For Nexus implementations that consist of only auxiliary pins, reset configuration
information must be valid on EVTI for at least four system clocks of the embedded
processor prior to negation of RSTI. The Nexus module samples EVTI at the
negation of RSTI.

The EVTI pin shall have a pull-up resistor with the following reset configuration
states.

9.1.2 Reset for IEEE 1149.1 Implementations

For Nexus modules that use a combination of AUX and IEEE 1149.1 port or that
use an IEEE 1149.1 port only (half-duplex), there are three ways in which the
Nexus module can be enabled:

• EVTI assertion upon de-assertion of TRST pin

Reset State Description

0 Message transmission enabled.

1 Message transmission disabled (default).
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 107 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
Reset configuration must be valid at least two IEEE 1149.1-defined TCKs
before the negation of TRST. Refer to A.4 - AC Electrical Characteristics -
IEEE 1149.1 Interface for detail on EVTI electrical characteristics.

• EVTI assertion during IEEE 1149.1 “TEST-LOGIC-RESET” state

Because the TRST pin is optional, this mechanism allows Nexus modules
implementing the IEEE 1149.1 port without TRST to have a mechanism to
enable Nexus. The “TEST-LOGIC-RESET” state can be reached by cycling
through the IEEE 1149.1 state machine using the TMS pin.

• Upon “NEXUS-ACCESS” IR instruction

For low-cost implementations, it may not be feasible to implement the EVTI pin.
Using the IEEE 1149.1-defined “NEXUS-ACCESS” IR value to enable Nexus
allows low-cost implementations to use only IEEE 1149.1-defined pins and low-
cost connectors. The specific value of the instruction is vendor defined. See 8.3
- Read/Write Access via the IEEE 1149.1 Port for detail on how the “NEXUS-
ACCESS” IR value is used to access Nexus registers.

9.1.3 Reset and Port Replacement

Embedded processors implementing LSIO port replacement shall receive reset
configuration information according to the Nexus standard to enable/disable
message transmission on the AUX OUT. If message transmission is enabled,
output messages will be transmitted normally with support for Port Replacement
Messages according to the Nexus standard. If message transmission is disabled,
auxiliary output pins shall provide vendor-defined LSIO capability.

9.2 Multiple Processor Implementations

The Nexus standard allows for embedded processor implementations that
comprise multiple clients to utilize a single AUX, depending upon the transfer
bandwidth requirement for the application. The AUX may be designated for a
single client or shared by multiple clients on the embedded device during runtime.
Messages transmitted via the AUX shall contain information defined by the Nexus
standard indicating which client generated the message. The SRC field within
each Public Message allows the development tools to distinguish which Nexus
client sent the particular message.

9.3 Multiple Address Threads

On embedded processors that implement data and program trace, there will be an
address thread for each type of trace: the data address thread for both Data Trace
- Data Read Messages and Data Trace - Data Write Messages and the instruction

Page 108 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
address thread for all Program Trace Messages. Messages containing a data
address packet will be encoded and compressed using the data address most
recently transmitted, thus creating a data address thread. Likewise, messages
containing an instruction address packet will be encoded and compressed using
the instruction address most recently transmitted, thus creating an instruction
address thread.

It is recommended that separate instruction and data address threads be
maintained, but for low-cost applications that may require address correlation
between program and data trace, there are two solutions allowed within the Nexus
standard:

• Use Program Trace - Correlation Messages

It is possible to use the Program Trace - Correlation Message to correlate
events, such as Data Trace Messages, with the instruction flow. The Nexus
standard recommends correlation of certain types of events, but also has left
space for vendor-defined events. Refer to 5.3.16 - Program Trace -
Correlation Message for detail.

• Maintain a single instruction/data address thread

This option is not recommended and highly discouraged. It is discouraged
because of the increased bandwidth required and the severe feature set
limitations it places on development tools. The bandwidth required is increased
because locality of reference is lost when switching back and forth between
instruction address space and data address space. For tools, storage-enabling
of message types is inhibited and modular design of packet encoding and
decoding is prevented, thus limiting execution speed, etc. High-end cores
should not even consider a one-thread approach.

With one address thread, the next address (data or instruction) will be
generated from the last message (Data Trace Message or Program Trace
Message, respectively).

9.4 Simultaneous Development of Multiple Embedded Processors

To facilitate development of multiple embedded processors interconnected by an
existing serial communication bus standard, control and status information
defined in the Nexus standard may be required to be accessible in the
programmer’s model. If this is required, precautions should be taken to ensure
that

• Development resources are used only for development and not for
application purposes.

• Security should be provided for proprietary applications to restrict
access to the application program.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 109 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
9.5 Security

Vendor-defined enable/disable mechanisms internal to the embedded processor
may be optionally provided for secure visibility of user resources on the
embedded processor.

9.6 Single Master for Tool Connection

The Nexus standard does not support multiple tools connected directly to the
Nexus input port. In other words, arbitration for multiple external tools is not
supported by the port. To connect multiple tools, either the tools should manage
the arbitration, or a single low-level tool should be connected with multiple high-
level tools interconnected and arbitrated by the single low-level tool.

Page 110 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
APPENDIX A
Connector and Electrical Specifications

A.1 Connection Options

Three possible connector options are available to be used for an AUX only
connection or a combined IEEE-1149.1-Auxiliary connection. These three options
use AMP System 50 connectors, GlenAir MicroD connectors, or Mictor
connectors (see Table A-1).

On all connector options, unused pins should be left as no connects.

Table A-2 and Table A-3 list the connector options and the signals in each option.

The connector naming convention is as follows:

<connector style><number of pins><interface type>

where

Connector style is

S = AMP style (System 50)
R = Robust Glenair MicroD
M = Mictor (Matched Impedance Connector)

Number of pins is 25, 26, 37, 38, 40, 50, 51, 78, or 100.

Interface type is

C = Combined IEEE-1149.1-Auxiliary Out
A = Auxiliary only (In and Out)

The AMP System 50 connector option is scalable and can be configured as 26,
40, 50, or 100 pins (see Table A-4).

The GlenAir MicroD connector option provides a robust connector and can have
25, 37, 51, or 100 pins (see Table A-5 through Table A-7).

The 3M Mictor 38-pin connector option is also scalable and can use either one or
two connectors, depending on the number of signals required (see Table A-8 and
Table A-9).
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 111 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
Note: Throughout this section, x is used as a wildcard character to replace any of
the above options.

Table A-1—Connector Part Numbers (Target)

Connector Part Number
A

M
P

 S
ty

le
S26x 1-104068-2 AMP System 50

S40x 104549-6 AMP System 50

S50x 104549-7 AMP System 50

S100x 104549-0 AMP System 50

R
ob

u
st

R25x MR7580-25P2BNU Glenair MicroD

R37x MR7580-37P2BNU Glenair MicroD

R51x MR7580-51P2BNU Glenair MicroD

R100x MR7580-100P2BNU Glenair MicroD

M
ic

to
r M38x 767054-1 AMP MICTOR

M76x Two times 767054-1 AMP MICTOR

Page 112 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003

t

Table A-2—Combined IEEE 1149.1-Auxiliary Connector Options

Pin Name

AMP Style Robust MICTOR

Comments

S
26

C

S
40

C

S
50

C

S
10

0C

R
25

C

R
37

C

R
51

C

R
10

0C

M
38

C

M
76

C

MCKI — — — — — — — — — —

AUX

MDI — — — — — — — — — —

MSEI — — — — — — — — — —

MCKO 1 1 1 1 1 1 1 1 1 1

MDO 1 6 8 16 1 5 8 16 8 16

MSEO 1 2 2 2 1 2 2 2 2 2

EVTO 1 1 1 1 1 1 1 1 1 1

EVTI 1 1 1 1 1 1 1 1 1 1

RSTI — — — — — — — — — —

PORT — — — 16 — — — 16 — 16 Port Replacemen

IEEE 1149.1 Pins 5 5 5 5 5 5 5 5 5 5 IEEE 1149.1

RDY 1 1 1 1 1 1 1 1 1 1

VREF 1 1 1 1 1 1 1 1 1 1

System SignalsRESET 1 1 1 1 1 1 1 1 1 1

CLOCKOUT — — — — — — — — 1 1

Vendor-Defined 1 1 2 3 0 1 3 3 5 9 —

Tool-Defined 1 2 4 4 1 2 4 4 4 9 —

VALTREF 1 1 1 1 1 1 1 1 1 1

PowerUBATT 2 2 2 2 2 2 2 2 2 2

GROUND 8 15 20 45 8 13 20 45 5a

a. Built into the Mictor connector.

10a

TOTAL SIGNALSb

b. GROUND and UBATT not included in total signals.

16 23 28 53 15 22 29 53 32 65 —

TOTAL PINS 26 40 50 100 25 37 51 100 38 76 —
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 113 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard

t

Table A-3—Auxiliary-Only Connector Options

Pin Name

AMP Style Robust MICTOR

Comments

S
26

A

S
40

A

S
50

A

S
10

0A

R
25

A

R
37

A

R
51

A

R
10

0A

M
38

A

M
76

A

MCKI 1 1 1 1 1 1 1 1 1 1

AUX

MDI 1 2 4 4 1 2 4 1 4 4

MSEI 1 1 1 1 1 1 1 1 1 1

MCKO 1 1 1 1 1 1 1 1 1 1

MDO 1 6 8 16 1 5 8 16 8 16

MSEO 1 2 2 2 1 2 2 2 2 2

EVTO 1 1 1 1 1 1 1 1 1 1

EVTI 1 1 1 1 1 1 1 1 1 1

RSTI 1 1 1 1 1 1 1 1 1 1

PORT — — — 16 — — — 16 — 16 Port Replacemen

IEEE 1149.1 Pins — — — — — — — — — — IEEE 1149.1

RDY — — — — — — — — — —

VREF 1 1 1 1 1 1 1 1 1 1

System SignalsRESET 1 1 1 1 1 1 1 1 1 1

CLOCKOUT — — — — — — — — — —

Vendor-Defined 1 1 2 3 0 1 3 3 5 5 —

Tool-Defined 3 3 3 3 3 3 3 3 2 2 —

VALTREF 1 1 1 1 1 1 1 1 2 2

PowerUBATT 2 2 2 2 2 2 2 2 2 2

GROUND 8 15 20 45 8 13 20 45 —a

a. Built into the Mictor connector.

—a

TOTAL SIGNALSb

b. GROUND and UBATT not included in total signals.

16 23 28 53 15 22 29 53 31 65 —

TOTAL PINS 26 40 50 100 25 37 51 100 38 76 —

Page 114 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
Table A-4—AMP System 50 Definition - Sxxx
S

10
0

S
50

S
40

S
26

Nexus
Combined

Signal
C

Nexus
Auxiliary

Signal
A

I/O
Pin

Num-
ber

Pin
Num-
ber

I/O

Nexus
Auxiliary

Signal
A

Nexus
Combined

Signal
C

A
10

0

A
50

A
40

A
26

UBATT UBATT OUT 1 2 OUT UBATT UBATT

VALTREF VALTREF OUT 3 4 I/O TOOL_IO0 TOOL_IO0

TDO TOOL_IO1 I/O 5 6 I/O TOOL_IO2 RDY

RESET RESET IN 7 8 OUT VREF VREF

EVTI EVTI IN 9 10 — GND GND

TRST RSTI IN 11 12 GND GND

TMS MSEI IN 13 14 — GND GND

TDI MDI0 IN 15 16 — GND GND

TCK MCKI IN 17 18 — GND GND

MDO0 MDO0 OUT 19 20 — GND GND

MCKO MCKO OUT 21 22 — GND GND

EVTO EVTO OUT 23 24 — GND GND

MSEO0 MSEO0 OUT 25 26 I/O VENDOR_IO0 VENDOR_IO0

MDO1 MDO1 OUT 27 28 — GND GND

MDO2 MDO2 OUT 29 30 — GND GND

MDO3 MDO3 OUT 31 32 — GND GND

TOOL_IO1 MDI1 IN 33 34 — GND GND

MSEO1 MSEO1 OUT 35 36 — GND GND

MDO4 MDO4 OUT 37 38 — GND GND

MDO5 MDO5 OUT 39 40 — GND GND

MDO6 MDO6 OUT 41 42 — GND GND

MDO7 MDO7 OUT 43 44 — GND GND

TOOL_IO2 MDI2 IN 45 46 — GND GND

TOOL_IO3 MDI3 IN 47 48 — GND GND

VENDOR_IO1 VENDOR_IO1 I/O 49 50 — GND GND

VEND_IO2 VEND_IO2 OUT 51 52 — GND GND

MDO8 MDO8 OUT 53 54 — GND GND

MDO9 MDO9 OUT 55 56 — GND GND

MDO10 MDO10 OUT 57 58 — GND GND

MDO11 MDO11 OUT 59 60 — GND GND

MDO12 MDO12 OUT 61 62 — GND GND

MDO13 MDO13 OUT 63 64 — GND GND

MDO14 MDO14 OUT 65 66 — GND GND
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 115 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
A
10

0

MDO15 MDO15 I/O 67 68 — GND GND

PORT0 PORT0 I/O 69 70 — GND GND

PORT1 PORT1 I/O 71 72 — GND GND

PORT2 PORT2 I/O 73 74 — GND GND

PORT3 PORT3 I/O 75 76 — GND GND

PORT4 PORT4 I/O 77 78 — GND GND

PORT5 PORT5 I/O 79 80 — GND GND

PORT6 PORT6 I/O 81 82 — GND GND

PORT7 PORT7 I/O 83 84 — GND GND

PORT8 PORT8 I/O 85 86 — GND GND

PORT9 PORT9 I/O 87 88 — GND GND

PORT10 PORT10 I/O 89 90 — GND GND

PORT11 PORT11 I/O 91 92 — GND GND

PORT12 PORT12 I/O 93 94 — GND GND

PORT13 PORT13 I/O 95 96 — GND GND

PORT14 PORT14 I/O 97 98 — GND GND

PORT15 PORT15 I/O 99 100 — GND GND

Table A-4—AMP System 50 Definition - Sxxx (Continued)
S

10
0

S
50

S
40

S
26

Nexus
Combined

Signal
C

Nexus
Auxiliary

Signal
A

I/O
Pin

Num-
ber

Pin
Num-
ber

I/O

Nexus
Auxiliary

Signal
A

Nexus
Combined

Signal
C

Page 116 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
Table A-5—GlenAir Robust Combined Definition - RxxC

Nexus Combined
Robust

Connector R25C
MR7580-25P2BNU,

Nexus Combined
Robust

Connector R37C
MR7580-37P 2BNU

Nexus Combined Robust
Connector R51C

Robust MR7580-51P2BNU

1
UBATT

1
UBATT

1
UBATT14

GND
20

GND
19

MDO02
UBATT

2
UBATT

36
GND

2
UBATT15

TDI
21

MCKO
20

GND3
VALTREF

3
VALTREF

37
MDO4

3
VALTREF16

GND
22

GND
21

MCKO4
TOOL_IO0

4
TOOL_IO0

38
GND

4
TOOL_IO017

TCK
23

EVTO
22

GND5
TDO

5
TDO

39
MDO5

5
TDO18

GND
24

GND
23

EVTO6
RDY

6
RDY

40
GND

6
RDY19

MDO0
25

MSEO0
24

GND7
RESET

7
RESET

41
MDO6

7
RESET20

GND
26

VEN_IO0
25

MSEO08
VREF

8
VREF

42
GND

8
VREF21

MCKO
27

MDO1
26

VEN_IO9
EVTI

9
EVTI

43
MDO7

9
EVTI22

GND
28

GND
27

MDO110
GND

10
GND

44
GND

10
GND23

EVTO
29

MDO2
28

GND11
TRST

11
TRST

45
TOOL_IO2

11
TRST24

GND
30

GND
29

MDO212
GND

12
GND

46
GND

12
GND25

MSEO0
31

MDO3
30

GND13
TMS

13
TMS

47
TOOL_IO3

13
TMS32

GND
31

MDO314
GND

48
GND

14
GND33

TOOL_IO1
32

GND15
TDI

49
VEN_IO1

15
TDI34

GND
33

TOOL_IO116
GND

50
GND

16
GND35

MSEO1
34

GND17
TCK

51
VEN_IO2

17
TCK36

GND
35

MSEO118
GND

18
GND37

MDO4 19
MDO0
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 117 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
Table A-6—GlenAir Robust Auxiliary Definition RxxA

Nexus Auxiliary
Robust

Connector R25A
MR7580-25P 2BNU,

Nexus Auxiliary
Robust

Connector R37A
MR7580-37P 2BNU

Nexus Auxiliary Robust
Connector R51A

Robust MR7580-51P 2BNU

1
UBATT

1
UBATT

1
UBATT14

GND
20

GND
19

MDO02
UBATT

2
UBATT

36
GND

2
UBATT15

MDI0
21

MCKO
20

GND3
VALTREF

3
VALTREF

37
MDO4

3
VALTREF16

GND
22

GND
21

MCKO4
TOOL_IO0

4
TOOL_IO0

38
GND

4
TOOL_IO017

MCKI
23

EVTO
22

GND5
TOOL_IO1

5
TOOL_IO1

39
MDO5

5
TOOL_IO118

GND
24

GND
23

EVTO6
TOOL_IO2

6
TOOL_IO2

40
GND

6
TOOL_IO219

MDO0
25

MSEO0
24

GND7
RESET

7
RESET

41
MDO6

7
RESET20

GND
26

VEN_IO0
25

MSEO08
VREF

8
VREF

42
GND

8
VREF21

MCKO
27

MDO1
26

VEN_IO9
EVTI

9
EVTI

43
MDO7

9
EVTI22

GND
28

GND
27

MDO110
GND

10
GND

44
GND

10
GND23

EVTO
29

MDO2
28

GND11
RSTI

11
RSTI

45
MDI2

11
RSTI24

GND
30

GND
29

MDO212
GND

12
GND

46
GND

12
GND25

MSEO0
31

MDO3
30

GND13
MSEI

13
MSEI

47
MDI3

13
MSEI32

GND
31

MDO314
GND

48
GND

14
GND33

MDI1
32

GND15
MDI0

49
VEN_IO1

15
MDI034

GND
33

MDI116
GND

50
GND

16
GND35

MSEO1
34

GND17
MCKI

51
VEN_IO2

17
MCKI36

GND
35

MSEO118
GND

18
GND37

MDO4 19
MDO0

Page 118 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
Table A-7—GlenAir R100x Definition
N

ex
u

s
C

o
m

b
in

ed
 R

o
b

u
st

 C
o

n
n

ec
to

r
R

10
0C

 -
 M

R
75

80
-1

00
P

2B
N

U
1

UBATT

N
ex

u
s

A
u

xi
lia

ry
 R

o
b

u
st

 C
o

n
n

ec
to

r
R

10
0A

 -
 M

R
75

80
-1

00
P

2B
N

U

1
UBATT76

GND
27

MDO1
76

GND
27

MDO152
GND

2
UBATT

52
GND

2
UBATT77

PORT4
28

GND
77

PORT4
28

GND53
MDO8

3
VALTREF

53
MDO8

3
VALTREF78

GND
29

MDO2
78

GND
29

MDO254
GND

4
TOOL_IO0

54
GND

4
TOOL_IO079

PORT5
30

GND
79

PORT5
30

GND55
MDO9

5
TDO

55
MDO9

5
TOOL_IO180

GND
31

MDO3
80

GND
31

MDO356
GND

6
RDY

56
GND

6
TOOL_IO281

PORT6
32

GND
81

PORT6
32

GND57
MDO10

7
RESET

57
MDO10

7
RESET82

GND
33

TOOL_IO1
82

GND
33

MDI158
GND

8
VREF

58
GND

8
VREF83

PORT7
34

GND
83

PORT7
34

GND59
MDO11

9
EVTI

59
MDO11

9
EVTI84

GND
35

MSEO1
84

GND
35

MSEO160
GND

10
GND

60
GND

10
GND85

PORT8
36

GND
85

PORT8
36

GND61
MDO12

11
TRST

61
MDO12

11
RSTI86

GND
37

MDO4
86

GND
37

MDO462
GND

12
GND

62
GND

12
GND87

PORT9
38

GND
87

PORT9
38

GND63
MDO13

13
TMS

63
MDO13

13
MSEI88

GND
39

MDO5
88

GND
39

MDO564
GND

14
GND

64
GND

14
GND89

PORT10
40

GND
89

PORT10
40

GND65
MDO14

15
TDI

65
MDO14

15
MDI090

GND
41

MDO6
90

GND
41

MDO666
GND

16
GND

66
GND

16
GND91

PORT11
42

GND
91

PORT11
42

GND67
MDO15

17
TCK

67
MDO15

17
MCKI92

GND
43

MDO7
92

GND
43

MDO768
GND

18
GND

68
GND

18
GND93

PORT12
44

GND
93

PORT12
44

GND69
PORT0

19
MDO0

69
PORT0

19
MDO094

GND
45

TOOL_IO2
94

GND
45

MDI270
GND

20
GND

70
GND

20
GND95

PORT13
46

GND
95

PORT13
46

GND71
PORT1

21
MCKO

71
PORT1

21
MCKO96

GND
47

TOOL_IO3
96

GND
47

MDI372
GND

22
GND

72
GND

22
GND97

PORT14
48

GND
97

PORT14
48

GND73
PORT2

23
EVTO

73
PORT2

23
EVTO98

GND
49

VEN_IO1
98

GND
49

VEN_IO174
GND

24
GND

74
GND

24
GND99

PORT15
50

GND
99

PORT15
50

GND75
PORT3

25
MSEO0

75
PORT3

25
MSEO0100

GND
51

VEN_IO2
100
GND

51
VEN_IO226

VEN_IO
26

VEN_IO
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 119 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
Table A-8—MICTOR Connector M38x and 1/2 of M76x

Combined
M38C or

M76C

Aux Only
M38A or

M76A

Aux Only
M38A or

M76A

Combined
M38C or

M76C

MSEO0 MSEO0 OUT 38 37 OUT VALTREF VALTREF

MSEO1 MSEO1 OUT 36 35 IN/OUT TOOL_IO0 TOOL_IO0

MCKO MCKO OUT 34 33 OUT UBATT UBATT

EVTO EVTO OUT 32 31 OUT UBATT UBATT

MDO0 MDO0 OUT 30 29 IN/OUT MDI1 TOOL_IO1

MDO1 MDO1 OUT 28 27 IN/OUT MDI2 TOOL_IO2

MDO2 MDO2 OUT 26 25 IN/OUT MDI3 TOOL_IO3

MDO3 MDO3 OUT 24 23 IN/OUT VEND_IO1 VEND_IO1

MDO4 MDO4 OUT 22 21 IN RSTI TRST

MDO5 MDO5 OUT 20 19 IN MDI0 TDI

MDO6 MDO6 OUT 18 17 IN MSEI TMS

MDO7 MDO7 OUT 16 15 IN MCKI TCK

RDY TOOL_IO_2 IN/OUT 14 13 IN/OUT VEND_IO4 VEND_IO4

VREF VREF OUT 12 11 IN/OUT TOOL_IO1 TDO

EVTI EVTI IN 10 9 IN RESET RESET

VEND_IO3 VEND_IO3 IN/OUT 8 7 IN/OUT VEND_IO2 VEND_IO2

CLKOUT CLKOUT OUT 6 5 IN/OUT VEND_IO0 VEND_IO0

RSVD4 RSVD4 4 3 RSVD3 RSVD3

RSVD2 RSVD2 2 1 RSVD1 RSVD1a

a. Pins 1 to 4 should be considered reserved” by logic analyzers.

Page 120 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
Figure A-1 - Nexus M76x Connector Layout shows the recommended layout for
the dual M76 connectors.

Table A-9—MICTOR Connector M76x (Second Half)

Combined
M76C

Aux Only
M76A

Aux Only
M76A

Combined
M76C

PORT0 PORT0 IN/OUT 38 37 OUT MDO8 MDO8

PORT1 PORT1 IN/OUT 36 35 OUT MDO9 MDO9

PORT2 PORT2 IN/OUT 34 33 OUT MDO10 MDO10

PORT3 PORT3 IN/OUT 32 31 OUT MDO11 MDO11

PORT4 PORT4 IN/OUT 30 29 OUT MDO12 MDO12

PORT5 PORT5 IN/OUT 28 27 OUT MDO13 MDO13

PORT6 PORT6 IN/OUT 26 25 OUT MDO14 MDO14

PORT7 PORT7 IN/OUT 24 23 OUT MDO15 MDO15

PORT8 PORT8 IN/OUT 22 21 IN/OUT TOOL_IO_4 TOOL_IO4

PORT9 PORT9 IN/OUT 20 19 IN/OUT TOOL_IO5 TOOL_IO5

PORT10 PORT10 IN/OUT 18 17 IN/OUT TOOL_IO6 TOOL_IO6

PORT11 PORT11 IN/OUT 16 15 IN/OUT TOOL_IO7 TOOL_IO7

PORT12 PORT12 IN/OUT 14 13 IN/OUT VEND_IO9 VEND_IO9

PORT13 PORT13 IN/OUT 12 11 IN/OUT VEND_IO8 VEND_IO8

PORT14 PORT14 IN/OUT 10 9 IN/OUT VEND_IO7 VEND_IO7

PORT15 PORT15 IN/OUT 8 7 IN/OUT VEND_IO6 VEND_IO6

- - - 6 5 IN/OUT VEND_IO5 VEND_IO5

RSVD4 RSVD4 4 3 RSVD_3 RSVD3

RSVD2 RSVD2 2 1 RSVD1 RSVD1a

a. Pins 1 to 4 should be considered reserved” by logic analyzers.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 121 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
Figure A-1—Nexus M76x Connector Layout

A.1.1 Signal Descriptions

Signal description used throughout this appendix is as follows:

OUT = output from the target to the development tool
IN = input to the target from the development tool

Refer to SECTION 6 - Nexus Port Signals for a description of the following
signals:

MDO, MSEO, MCKO, MDI, MSEI0, MSEI1, MCKI, RSTI, EVTI, EVTO

Refer to IEEE Std 1149.1-1990 for a description of the following signals:

TDO, TDI, TCK, TMS, TRST

A.1.1.1 CLOCKOUT

CLOCKOUT is the system clock from the target processor. CLOCKOUT helps
development tools to determine the proper rate for TCK. CLOCKOUT can also be

Target PCB
1 1

M38x
M76x 0.75 inch

[19.5 mm]

Page 122 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
used to indicate target activity and used for MCKO where it matches the needs of
the interface. It can also be used in cases where the system clock is higher (or
lower) than the AUX.

A.1.1.2 RESET

The RESET signal will cause the target to enter its reset state. The tool and target
should use open-drain output drivers for this pin.

A.1.1.3 Vendor-Defined Signals

Vendor-defined signals may be used as needed by the target developer. Tool
vendors should design their tools so that this signal can be configured as an input
or output. These signals should be at a low enough slew rate as to not cause
crosstalk on adjacent pins. Vendor_IO pins can also be used as Time Stamp pins
if defined by the vendor.

A.1.1.4 Tool-Defined Signals

Tool-defined signals may be used as needed by the tool developer. This signal
should be at a low enough slew rate as to not cause crosstalk on adjacent pins.

A.1.1.5 VREF

The VREF signal is used to establish the signaling levels of the debug interface of
the target system. Any current drawn from this pin should be limited to that
needed for voltage translation and/or signal interpolation and is not intended to
supply logic functions or power. VREF is not necessarily at the target processor
VDD level.

A.1.1.6 PORT[15:0]

Port replacement is a concept in which up to 16 LSIO pins of the target processor
can also be used to carry AUX signals. The development tool connects to the
original I/O devices on the target system via the PORT pins. The development tool
performs the I/O functions on behalf of the target when the tool receives Port
Replacement Messages from the target processor.

A.1.1.7 VALTREF

VALTREF provides an additional vendor-defined voltage reference. In systems
that have a keep-alive voltage, it can be defined by the vendor to be the standby
voltage to allow the tool to monitor when or if the keep-alive voltage is removed
from the target system. In systems without standby requirements, this pin could
be defined to provide an additional reference voltage.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 123 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
A.1.1.8 UBATT

UBATT pins are vender-defined power supply pins. They are not to be used as
logic signals. These pins provide a voltage to the tool that supplies a small amount
of current. The connection should be reverse voltage protected. See Table A-10.

A.1.2 Nexus Combined Implementation Considerations

It is recommended that the signals in Table A-11 be connected to pull-ups on the
target to prevent floating signals when the tool is not connected or powered on.
TRST should have a pull-down. The purpose of these pull devices is to ensure all
inputs are not left floating when a tool is not connected.

It is recommended that the signals in Table A-12 be connected to pull-ups on the
tool to prevent floating signals when the target is not connected or powered on.

The target may need a jumper in the CLOCKOUT path near its source to prevent
excessive radiated noise on the signal. This target design consideration
eliminates the CLOCKOUT path between the central processing unit (CPU) and
the debug connector when debug operations are not being performed.

WARNING
Any optional signals not used by the target must be left
unconnected at the target debug connector.

Table A-10—Recommended UBAT Specifications

Specification Minimum Maximum Units

Voltage Range 5 20 V

Maximum Current — 300 mA

Maximum In-rush Currenta

a. Maximum duration of 3 ms.

1.0 A

Table A-11—Signals for Pull-Ups on the Target

Signals Pull Device Value

TMS, TCK, TDI, TRST, RESET, EVTI 10K Ω

Table A-12—Signals for Pull-Ups on the Tool

Signals Pull-up

CLOCKOUT, TDO, EVTO, RDY 10K Ω

Page 124 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
A.1.3 Nexus Aux-Only Implementation Considerations

Because of its location on pin 2, VREF is used as a virtual ground for RESET on
pin 1. Therefore, VREF should have decoupling capacitors at both ends of the
cable connected to ground.

It is recommended that the signals in Table A-13 be connected to pull-ups on the
target to prevent floating signals when the tool is not connected or powered on.
RSTI should have a pull-down.

It is recommended that the signals in Table A-14 be connected to pull-ups on the
tool to prevent floating signals when the target is not connected or powered on.
The purpose of these pull devices is to ensure all inputs are not left floating when
a target is not connected.

WARNING
Any optional signals not used by the target must be left
unconnected at the target debug connector.

A.2 DC Electrical Characteristics

Table A-15 lists the electrical characteristics for the signals used in the Nexus
interface.

All dc characteristics apply to the IEEE 1149.1 and AUX interfaces.

Table A-13—Signals Connected to Pull-Ups on the Target

Signals Pull Device Value

RESET, EVTI, RSTI, MSEI, MDI[0:4], MCKI 10K Ω

Table A-14—Signals Connected to Pull-Ups on the Tool

Signals Pull-up

MDO[16:0], MCKO, MSEO, EVTO, RDY 10K Ω

Table A-15—Electrical Characteristics in the Nexus Interface

Characteristic VREF Voltage Min Max Unit

Input Low Voltage VREF 2.8 V to
5 V

–0.3 0.8 V

Input High Voltage 2.0 1.2 (VREF) V

Input Low Voltage VREF below
2.8 V

–0.3 0.3 (VREF) V

Input High Voltage 0.7 (VREF) 1.2 (VREF) V

VREF Output Current — — 1 mA
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 125 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
Output voltage levels need to be sufficient to satisfy the associated input
requirements with a suitable margin.

The tool must sense the voltage on the VREF pin before attempting to drive
outputs.

Absolute maximum tool output voltage is VREF + 20%.

The tool must not draw more than 1 mA of current from the VREF. It is a good idea
to put a current-limiting resistor in series with the VREF, but the value should be
minimal so as not to degrade the value of the VREF at the tool.

A.3 AC Electrical Characteristics - General

Input rise and fall times are measured at 20% to 80% values.

All setup and hold times are measured from the 50% point of the respective clock
edge and the 50% point of the logic signal.

All measurements are made assuming a minimum capacitive loading of 25 pF.

A.4 AC Electrical Characteristics - IEEE 1149.1 Interface

Table A-16 lists the timing constraints for the IEEE 1149.1 interface.

Figure A-2 gives a pictorial representation of critical timing in Table A-16.

Table A-16—Timing Constraints for the IEEE 1149.1 Interface

Number Characteristic Min Max Unit

1 TCK Cycle Time (Tc) 30 —- ns

2 TCK Duty Cycle 40 60 %

3
Rise and Fall Times

(20%–80%)
0 3 ns

4
TRST Setup Time to TCK

Falling Edge
(0.30)Tc — ns

5 TRST Assert Time (0.30)Tc — ns

6 TMS, TDI Data Setup Time (0.20)Tc — ns

7 TMS, TDI Data Hold Time (0.10)Tc — ns

8 TCK Low to TDO Data Valid (–0.10)Tc (0.20)Tc ns

9 EVTO Pulse Width (1.0) System Clock — ns

10 EVTI Pulse Width (4.0)Tc — ns

Page 126 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
Figure A-2—IEEE 1149.1 Timing Diagram

A.5 AC Electrical Characteristics - AUX

Table A-17 lists the timing constraints for the AUX interface. Figure A-3 illustrates
the critical timing for the clock to data on the input. Figure A-4 illustrates the
critical timing for the clock to data on the output.

Table A-17—Timing Constraints for the AUX Interface

Number Characteristic Min Max Unit

1 MCKO Cycle Time (Tco) 5 — ns

2 MCKO Duty Cycle 40 60 %

3 Output Rise and Fall Times 0 3 ns

4 MCKO low to MDO Data Valid (–0.10)Tco (0.20) Tco ns

5 MCKI Cycle Time (Tci) 5 — ns

6 MCKI Duty Cycle 40 60 %

7 Input Rise and Fall Times 0 3 ns

8 MDI Setup Time (0.20)Tci — ns

9 MDI Hold TIme (0.10)Tci — ns

10 RSTI Pulse Width (4.0) Tco — ns

11 MCKO low to EVTO Valid (–0.10)Tco (0.20) Tco ns

12 EVTI Pulse Width (4.0) Tco — ns

13
EVTI to RSTI Setup

(at reset only)
(4.0) System Clock — ns

14
EVTI to RSTI Hold

(at reset only)
(4.0) System Clock — ns

TCK

TDI, TMS Input Data Valid

Output Data ValidTDO, RDY

6 7

8

Page 127 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
Figure A-3—AUX Data Input Timing Diagram

Figure A-4—AUX Data Output Timing Diagram

MDO and EVTO data are held valid until the next MCKO low transition.

When the RSTI pin is asserted, the EVTI pin is used to enable or disable the AUX
(see Figure A-5 and Figure A-6). Because MCKO probably is not active at this
point, the timing must be based on the system clock. Because the system clock is
not realized on the connector, its value must be known by the tool.

Figure A-5—Enable Auxiliary from RSTI pin

MCKI

MDI Input Data Valid

8 9

MCKO

Output Data ValidMDO, EVTO
4
11

RSTI

EVTI

13 14

Page 128 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
Figure A-6—Disable Auxiliary from RSTI pin

A.6 Terminations

Because of the high-speed natures of the IEEE 1149.1 port and AUX, it is
recommended that the target and tool both employ a point-to-point series
termination scheme (see Figure A-7 and Figure A-8).

Zout = Output impedance of the driver
Ztarget = Impedance of traces on the target printed circuit board
Zcable = Characteristic impedance of cable
Ztool = Impedance of traces on the tool printed circuit board
Rt = Source terminators

Figure A-7—Target Output Source Termination

RSTI

EVTI

13 14

Output
buffer

In

Input latch

Rt
Ztarget Zcable Ztool

Zout

Zout + Rt = Ztarget = Zcable = Ztool
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 129 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
Figure A-8—Tool Output Source Termination

Output
buffer

In

Input latch

Rt
ZtoolZcableZtarget

Zout

Zout + Rt = Ztool = Zcable = Ztarget

Page 130 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
APPENDIX B
Recommendations for Access to Control and Status Registers

Silicon vendors must implement the API requirements for tool software
compatibility as described in the Nexus API. In addition, embedded processors
complying with Class 2, 3, or 4 are required to implement the AUX message
protocol and the required Public Messages as described in Section 5 - Nexus
Public Messages and Section 7 - AUX Message Protocol. There are no
requirements in the Nexus standard, however, regarding conformity of
development registers that are accessed by tools for control and status.

This appendix contains only recommendations (not requirements) for silicon
vendors in implementing development registers that are accessed by tools for
control and status.

NOTE
Development tool vendors should not design tools based upon the
contents of this appendix. Obtain the silicon vendor’s API and product
specification for development tool design.

B.1 Overview

The Nexus standard supports development for up to 32 clients6 on an embedded
processor. Each client on embedded processors complying with Class 1 may
provide development tool access to control and status according to these
recommendations via the IEEE 1149.1 interface. Each client on embedded
processors complying with Class 2, 3, or 4 may provide development tool access
to control and status according to these recommendations via either the AUX or
the IEEE 1149.1 interface.

Embedded processors may provide development control and status registers
according to Table B-1, Table B-2, and Table B-3. Table B-1 illustrates the
“NEXUS-ACCESS” instruction. Writing an appropriate value to the “NEXUS-
ACCESS” instruction, as defined by the silicon vendor, will enable access to
NRRs illustrated in Table B-3. Additionally, the DID Register information identifies
key attributes to the development tool concerning the embedded processor.

6Refer to 1.4 - Terms and Definitions.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 131 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
In Table B-2 the Client Select Control (CSC) Register selects one of the clients on
the embedded processor for access. Once the client is selected, control and
status accesses are directed to the selected client. An alternate client can be
selected at any time during operation.

The NRR indices as shown in Table B-3 shall be identical for accesses via the
IEEE 1149.1 interface and the AUX. The fields associated with each opcode
accessed via the IEEE 1149.1 interface shall be identical in size and function to
the packets accessed for each opcode via the AUX. The Public Messages in
SECTION 5 - Nexus Public Messages prescribe the method for accessing
recommended control and status registers.

Table B-3 also defines control and status access as indicated per clients of
Class 2, 3, or 4 embedded processors. Vendor-defined register space is also
provided so that vendor-defined development functions may be implemented. For
embedded processors complying with Class 2, 3, or 4, the vendor-defined
registers may consist of the transfer registers for interfacing with a processor, e.g.,
Program Counter and Processor Status.

Table B-1—IEEE 1149.1 Register Map for Nexus-Related IR Values

Control/Status
Compliance

Class
Access
Opcode

Read/
Write

IEEE 1149.1 Public Opcodes — Vendor-defined —

DID Registera

a. The DID Register is defined by IEEE Std 1149.1-1990.

All Vendor-defined R

NEXUS-ACCESSb

b. Only needed for IEEE 1149.1 port (and not AUX). See Section 8 - IEEE
1149.1 Message Protocol.

All Vendor-defined R/W

NEXUS-STATUSc

c. Optional instruction for IEEE 1149.1 port (not AUX). See 8.2.2 - NRR
Access Status (Optional).

All Vendor-defined R

Table B-2—Summary of Nexus Client Registers

Control/Status
Compliance

Class
Access
Opcode

Read/
Write

DID All 0 R

CSC 4a

a. If an embedded processor contains multiple clients, then CSC Register is
required (for AUX-only implementations).

1 R/W

Shared by all Nexus Clients — 2–63 —

Reserved — 64–127 —

Vendor-defined — 128–255 —

Page 132 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
Table B-3—NRRs for Clients

NRR
Compliance

Class
Register Index

Read/
Write

Device ID (DID) (auxiliary only) All 0 R

Client Select Control (CSC) 2, 3, 4a

a. Needed if there are multiple clients on an embedded processor.

1 R/W

Development Control (DC) 2, 3, 4 2 R/W

Reserved for Development Control — 3 —

Development Status (DS) 4 4 R

Reserved for Development Status — 5 —

User Base Address (UBA) 2, 3, 4 6 Rb

b. May also be read/write access for development tool configuration of UBA.

Read/Write Access Control/Status (RWCS) 3, 4 7 R/W

Reserved for Read/Write Access Control/Status — 8 —

Read/Write Access Address (RWA) 3, 4 9 R/W

Read/Write Access Data (RWD) 3, 4 10 R/W

Watchpoint Trigger (WT) 4 11 R/W

Reserved for Watchpoint Trigger — 12 —

Data Trace Control (DTC) 3, 4 13 R/W

Data Trace Start Address (DTSA) (2) 3, 4 14–15 —

Data Trace Start Address (Reserved - 2) — 16–17 —

Data Trace End Address (DTEA) (2) 3, 4 18–19 —

Data Trace End Address (Reserved - 2) — 20–21 —

Breakpoint/Watchpoint Control (BWC) (2) 4 22–23 R/W

Breakpoint/Watchpoint Control (Reserved - 6) — 24–29 —

Breakpoint/Watchpoint Address (BWA) (2) 4 30–31 R/W

Breakpoint/Watchpoint Address (Reserved - 6) — 32–37 —

Breakpoint/Watchpoint Data (BWD) (2) 4 38–39 R/W

Breakpoint/Watchpoint Data (Reserved - 6) — 40–45 —

Input Public Message Register (IPMR) 2,3,4 46 R/W

Output Public Message Register (OPMR) 2,3,4 47 R/W

Reserved for future Nexus functionality — 48–54 —

Re-mapped NRRs (see B.9 - NRRs Concate-
nated for Better Transfer Efficiency)

— 55–63 —

Vendor defined — 64–127 —

Reserved for future Nexus functionalityc

c. IEEE 1149.1 is not capable of Access Future Reserved.

— 128–255 —
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 133 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
B.2 Reset

All control and status information shall be reset by one of the following:

• IEEE 1149.1 “TEST-LOGIC-RESET” state or assertion of TRST pin

• Assertion of RSTI pin (auxiliary only)

No control or status information shall be reset for system reset on the embedded
processor.

B.3 Access with the IEEE 1149.1 Interface

The IEEE 1149.1 state machine is shown in Figure 8-1. The value shown
adjacent to each arc represents the value of the TMS signal sampled on the rising
edge of the TCK signal.

Access to NRRs is enabled by loading a single instruction (“NEXUS-ACCESS”)
into the IEEE 1149.1 IR. Once the IEEE 1149.1 “NEXUS-ACCESS” instruction
has been loaded, the IEEE 1149.1 port allows tool-target communications with all
NRRs according to the register index in Table B-3.

Reading/writing of an NRR then requires two passes through the Data-Scan path
of the IEEE 1149.1 state machine.

1. The first pass through the Data Register (DR) selects the NRR to be
accessed by providing an index (see Table B-3) and the direction (read
or write). This is achieved by loading an 8-bit value into the IEEE 1149.1
DR. This register has the following format:

Read/Write:

0 = Read

1 = Write

NRR Address:
Selected from values in Table B-3

2. The second pass through the DR then shifts the data in or out of the
IEEE 1149.1 port, LSB first.

a. During a read access, data are latched from the selected NRR when
the IEEE 1149.1 state machine passes through the CAPTURE-DR
state.

7 bit NRR Address R/W
LSBMSB

Page 134 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
b. During a write access, data are latched into the selected NRR when
the IEEE 1149.1 state machine passes through the UPDATE-DR
state.

B.4 Access with the AUX

The control and status registers are accessed via the four Public Messages—
NRR Access - Target Ready, NRR Access - Read Register (tool requests
information), NRR Access - Write Register (tool provides information), and NRR
Access - Read/Write Response (from tool or target).

To write control or status information, the following sequence would be required:

• If a prior NRR Access - Target Ready Message was transmitted by the
target, then the tool transmits a NRR Access - Write Register Message,
which contains write attributes and a register value to be written.

• The tool waits for the NRR Access - Target Ready Message before
initiating the next access.

To read control or status information, the following sequence would be required:

• If a prior NRR Access - Target Ready Message was transmitted by the
target, then the tool transmits a NRR Access - Read Register Message,
which contains read attributes.

• When the target reads data, it transmits a NRR Access - Read/Write
Response Message containing read data. The target is now ready for
the next access.

B.5 NRRs - Control and Status

This section describes the fields composing each control and status register. The
control registers in this section are organized so that the most used bits are
located in the MSBs of the registers. This allows for short write sequences from
the tool to write only a few bit fields.

For many of the control and status opcodes defined in this section, there are bits
reserved as vendor defined. Vendor-defined development features and operations
may be included in these designated bits. For tools not implementing these
vendor-defined development features, the fields should not be written or set to a
value of 0. The setting of 0 is designated as the default state.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 135 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
B.5.1 Device ID (DID) Register

Accessing the DID Register provides key attributes to the development tool
concerning the embedded processor. This information assists the development
tool in determining configuration and features of the device. For Classes 2, 3, and
4 embedded processors, this information is also transmitted via the AUX OUT
upon exit of AUX reset.

For embedded processors with a full AUX, the DID Register shown in Table B-4
should be implemented in compliance with the register organization and bit field
definitions as specified in IEEE Std 1149.1-1990. For embedded processors with
an IEEE 1149.1 interface used for the Nexus standard, the DID Register defined
by IEEE Std 1149.1-1990 must be implemented. In this case, the DID Register
defined in this subsection is not necessary.

The fields include embedded processor information containing the manufacturer
ID, product number, and revision number. In general, the revision number must be
changed (i.e., incremented) whenever the embedded processor has a mask
revision that will disrupt the tools in any manner (see Table B-4).

B.5.2 Client Select Control (CSC) Register

The CSC Register contains a single 5-bit field that, when written to, selects the
client to be accessed via the IEEE 1149.1 interface or the AUX. The encodings of
the CSC Register are vendor defined. The setting of the CS field selects which
client is accessed for access opcodes 1–127.

The CSC Register is recommended if there are multiple clients on the embedded
processor (see Table B-5).

Table B-4—DID Register

Bit
Number

Field
Name

Description

31–28 RN Revision Number

27–12 PN Product Number

11–1 MID Manufacturer ID

0 — Reserved

Table B-5—CSC Register

Bit
Number

Field
Name

Description

7–5 — Reserved

4–0 CS Client select

Page 136 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
B.5.3 Development Control (DC) Register

The DC Register is used for basic development control of a client. The debug
enable (DBE) field enables debug mode, and the debug request (DBR) field
allows for a software mechanism to enter debug mode. If debug mode is enabled,
then asserting DBR, power-on reset, or an exception may cause the processor to
halt and enter debug mode. Enabling debug mode is necessary to use features
such as single-stepping and breakpoints.

The trace mode (TM) field enables BTM, DTM, and OTM. One or all types of trace
may be enabled by TM or via a watchpoint occurrence (refer to B.5.6 -
Watchpoint Trigger (WT) Register).

If the EVTI control (EIC) field = 00 and program and/or data trace are enabled, a
high-to-low transition on EVTI will cause program and/or data trace
synchronization, respectively. If EIC = 01, a high-to-low transition on EVTI will
cause a breakpoint to occur. If EIC = 10, no operation will occur regardless of the
state on EVTI.

The memory substitution (MS) and step enable (SS) bit fields determine how the
processor will operate when DBR is negated. If MS = SS = 0, then normal
operation will commence when DBR is negated. If MS = 0 and SS = 1, then a
single step will occur when DBR is negated with internal memory access. If MS =
1 and SS = 0, then operation will commence when DBR is negated with
instruction/data access via the AUX. If MS = SS = 1, then a single step will occur
when DBR is negated with instruction/data access via the AUX.

When MS = 1, the state of the substitution operand (SO) bits determines which
combination of instruction and data accesses are substituted so that memory
accesses are made via the AUX or IEEE 1149.1 interface. If MS = 0, memory
substitution is not enabled, and memory accesses are made to the target memory
system.

The overrun control (OVC) field is used to determine control for overrun of BTM
and DTM. Overruns can be handled by displaying an Overrun Message to
development tools, delaying the processor to avoid BTM overruns, delaying the
processor to avoid DTM overruns, or delaying the processor to avoid both BTM
and DTM overruns.

The client breakpoint input (CBI) bit is an optional control bit that, when enabled,
gates a global, wired-OR breakpoint signal to the client. When the global
breakpoint signal is asserted and the CBI bit is asserted, it causes a breakpoint to
occur on the client. Each client should also wire-OR its breakpoint status output to
this global breakpoint signal. When CBI is negated, the client will only break for
breakpoint conditions internal to the client.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 137 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
For embedded processors complying with Class 2 or 3, the only development
control field required is TM. For this case all other fields except the vendor-defined
field shall be reserved and contain the same number of bits (see Table B-6).

Table B-6—DC Register

Bit
Number

Field
Name

Description

31–24 — Vendor-defined

23–15 — Reserved

14 CBI
CBI - Client Breakpoint Input (optional)
0 = Break for internal breakpoints only
1 = Break for other clients’ breakpoints also

13 DBE
DBE - Debug Enable (Class 4)
0 = Debug mode disabled
1 = Debug mode enabled

12 DBR
DBR - Debug Request (Class 4)
0 = Exit debug mode
1 = Request debug mode

11 MS
MS - Memory Substitution (Class 4)
0 = Use instructions and data in target memory
1 = Access instruction/data through AUX

10–9 SO

SO - Substitution Operands (Class 4)
00 = Instructions and data
01 = Instructions only
10 = Data only
11 = Reserved

8 SS
SS - Step Enable (Class 4)
0 = Single-step disabled
1 = Single-step enabled

7–5 OVC

OVC - Overrun Control (Class 4)
000 = Generate overrun messages
001 = Delay processor for BTM overruns
010 = Delay processor for DTM and OTM overruns
011 = Delay processor for BTM, DTM and OTM overruns
100–111 = Reserved

4–3 EIC

EIC - EVTI Control (Class 2, 3, 4)
00 = EVTI for program and data trace synchronization
01 = EVTI for breakpoint generation
10 = No operation
11 = Reserved

2–0 TM

TM - Trace Mode (Class 2, 3, 4)
000 = No Trace
1XX = BTM Enabled
X1X = DTM Enabled
XX1 = OTM Enabled

Page 138 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
B.5.4 Development Status (DS) Register

When debug mode is entered the condition is detected by reading the debug
status (DBS) bit in the DS Register or by observing the Debug Status Message on
the auxiliary pins. The single-step status (SSS) field will also be set if debug mode
is entered after a single step. The hardware breakpoint (HWB) field and software
breakpoint (SWB) field also indicate whether a hardware breakpoint (e.g., address
comparator) or a software breakpoint (e.g., breakpoint instruction) caused the
processor to halt and enter debug mode. The breakpoint status (BPn) bits indicate
which breakpoint occurred.

Other conditions that may impact development support are detecting when the
processor is in a low-power mode or when a nonrecoverable hardware error has
occurred. A stop (STP) and hardware error (HWE) bit may be implemented to
indicate these conditions.

The DS Register is read-only. All status bits are dynamic and do not require
clearing. This register is recommended for embedded processors complying with
Class 4. The contents of the DS Register are transmitted out the auxiliary pins
upon a change in state of any bit (see Table B-7).

Table B-7—DS Register

Bit
Number

Field
Name

Description

31–24 — Vendor-defined

23–16 — Reserved

15–8 BP7-0
BPn - Breakpoint Status
0 = No breakpoint
1 = Breakpoint occurred

7 — Reserved

6 RSTS
RSTS - Reset Status
0 = Processor not reset
1 = Processor reset since last DS Register read

5 DBS
DBS - Debug Status
0 = Processor not halted
1 = Processor halted in debug mode

4 STP
STP - Stop Status
0 = Processor not stopped
1 = Processor stopped in low-power mode

3 HWE
HWE - Hardware Error
0 = No hardware error
1 = Nonrecoverable hardware error occurred

2 HWB
HWB - Hardware Breakpoint Status
0 = No hardware breakpoint
1 = Hardware breakpoint
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 139 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
B.5.5 User Base Address (UBA) Register

The UBA Register provides visibility for the development tool to determine what
the setting is for the vendor-defined user base address. The UBA Register is the
memory map base address for user access to specific resources of the Nexus
development port. If needed, the UBA Register may be writable by the
development tool to configure the memory map base address for user access.

User access to the Nexus development port is required for OTM and DQM and
reserved for other uses. The size of the UBA Register is vendor defined (see
Table B-8).

The memory map for user access of development features is shown in Table B-9,
where offset is the base word size of the embedded processor.

The UBA Register is recommended for embedded processors complying with
Class 2, 3, or 4.

1 SWB
SWB - Software Breakpoint Status
0 = No software breakpoint
1 = Software breakpoint

0 SSS
SSS - Single-Step Status
0 = Processor not halted
1 = Processor halted in debug mode after single step

Table B-8—UBA Register

Bit
Number

Packet
Name

Description

Vendor
defined

UBA Vendor-defined user base address

Table B-9—Memory Map for User Accesses

Memory Map Location Description

(UBA) + 2 x Offset Reserved for future use

(UBA) + 1 x Offset Reserved for future use

(UBA) Ownership Trace Register (OTR)

(UBA) – 1 x Offset Data Acquisition Control

(UBA) – N x Offset Location for Date Acquisition Messages where N is data ID

Table B-7—DS Register (Continued)

Bit
Number

Field
Name

Description

Page 140 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
B.5.5.1 Ownership Trace Register (OTR)

The OTR shall be provided only for general-purpose processor clients of
embedded processors complying with Class 2, 3, or 4. The OTR provides a
register to which an operating system can write an ID for the current task/process.
The size of the OTR is vendor defined.

B.5.5.2 Data Acquisition Messaging (DQM)

DQM is achieved by user writes to appropriate locations in the memory map
shown in Table B-9. The write information is queued up for messaging via the
auxiliary pins. The location in the DQM portion of the UBA Register map to which
data are written determines the data ID tag for the message, with the exception of
the Data Acquisition Control, which is used for DQM queue control.

DQM data written to a location in the UBA Register map are queued up until a
value of 0x0 is written to Data Acquisition Control, at which point the ID tag and
data values are transferred on the auxiliary pins (refer to 4.10 - Data Acquisition
(Optional)). A Data Acquisition Message transfer is also started if the message
queue fills up or if another location in the DQM portion of the UBA Register map is
written to before 0x0 is written to Data Acquisition Control. If the queue fills up
before 0x0 is written to the address pointed to by the UBA Register, subsequent
writes to locations in the DQM portion of the UBA Register map will be stalled until
queue space becomes available.

For simplicity of hardware implementation, Data Acquisition Message IDs will be
2 bits or greater.

B.5.6 Watchpoint Trigger (WT) Register

The WT Register allows the watchpoints defined in the breakpoint/watchpoint
registers (refer to B.8 - NRRs - Breakpoint/Watchpoint) to be assigned to trigger
actions. The program trace start (PTS) and program trace end (PTE) fields select
watchpoints to enable and disable program trace, effectively producing an
address- and/or data-related “window” for triggering program trace. The data trace
start (DTS) and data trace end (DTE) fields select watchpoints to enable and
disable data trace, effectively producing an address- and/or data-related “window”
for triggering data trace. Program and/or data trace is triggered via the WT setting
if the TM field (refer to B.5.3 - Development Control (DC) Register) has not
already enabled program and/or data trace.

The memory substitution start (MSS) field selects a watchpoint to trigger memory
substitution. (See Table B-10.) Refer to B.5.3 - Development Control (DC)
Register for additional fields related to memory substitution.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 141 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
The WT Register is recommended for embedded processors complying with
Class 4.

B.6 NRRs - Read/Write Access

The Read/Write Access feature provides DMA-like access to internal memory-
mapped resources when the client is halted or during runtime. Three registers are
used for the Read/Write Access feature:

• Read/Write Access Control/Status (RWCS)

• Read/Write Access Address (RWA)

• Read/Write Access Data (RWD)

The tool will write to a user memory map location first by updating the RWA
Register and RWD Register with the user address and data to be written and then
by updating the RWCS Register with the write access attributes. The tool will read
from a user memory map location first by updating the RWA Register with the user
address to be read and then by updating the RWCS Register with the read access
attributes.

These registers are recommended for embedded processors complying with
Class 3 or 4.

Table B-10—WT Register

Bit
Number

Field
Name

Description

31–29 PTS
PTS - Program Trace Start
000 = Trigger disabled
001 = 111 Use watchpoint 1–7

28–26 PTE
PTE - Program Trace End
000 = Trigger disabled
001 = 111 Use watchpoint 1–7

25–23 DTS
DTS - Data Trace Start
000 = Trigger disabled
001 = 111 Use watchpoint 1–7

22–20 DTE
DTE - Data Trace End
000 = Trigger disabled
001 = 111 Use watchpoint 1–7

19–17 MSS
MSS - Memory Substitution Start
000 = Trigger disabled
001 = 111 Use watchpoint 1–7

16–8 — Reserved

7–0 — Vendor-defined

Page 142 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
More detailed information on using the Read/Write Access feature is included in
B.6.1 - Access with the IEEE 1149.1 Interface through B.6.5 - RWD Register.

B.6.1 Access with the IEEE 1149.1 Interface

The IEEE 1149.1 state machine is shown in Figure 8-1. The value shown
adjacent to each arc represents the value of the TMS signal sampled on the rising
edge of the TCK signal.

1. For a block read the following sequence would be required:

a. Initialize the RWA Register through the IEEE 1149.1 access method
outlined in B.3 - Access with the IEEE 1149.1 Interface using the
NRR index of 9 (see Table B-3).

b. Initialize the RWCS Register through the IEEE 1149.1 access
method outlined in B.3 - Access with the IEEE 1149.1 Interface
using the NRR index of 7 (see Table B-3).

c. The read data will then be transferred to the RWD Register. When
completed (without error), the Nexus block decrements the number
in the CNT field and sets the DV bit. Setting the DV bit indicates that
the device is ready for the next access.

d. The data can then be read from the RWD Register through the IEEE
1149.1 access method outlined in B.3 - Access with the IEEE
1149.1 Interface using the NRR index of 10 (see Table B-3).

e. Once the RWD value has been read, the RWA Register will then be
incremented to the next word of size SZ and Step 1c will be
repeated. When the CNT field reaches a value of 0, the AC bit is
cleared indicating the end of the read access.

2. For a block write the following sequence would be required:

a. Initialize the RWA Register through the IEEE 1149.1 access method
outlined in B.3 - Access with the IEEE 1149.1 Interface using the
NRR index of 9 (see Table B-3).

b. Initialize the RWD Register through the IEEE 1149.1 access method
outlined in B.3 - Access with the IEEE 1149.1 Interface using the
NRR index of 10 (see Table B-3).

c. Initialize the RWCS Register through the IEEE 1149.1 access
method outlined in B.3 - Access with the IEEE 1149.1 Interface
using the NRR index of 7 (see Table B-3).

d. The Nexus block will then transfer the data value from the RWD
Register to the memory-mapped address in the RWA Register.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 143 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
When completed (without error), the Nexus block decrements the
number in the CNT field and clears the DV bit. Clearing the DV bit
indicates that the device is ready for the next access.

e. Repeat Step 2b until the CNT field has a value of 0. When this value
is reached, the AC bit will be cleared indicating the end of the write
access.

B.6.2 Access with the AUX

Use the NRR Access Public Messages described in 5.3.24 - NRR Access -
Target Ready Message through 5.3.27 - NRR Access - Read/Write Response
Message.

B.6.3 RWCS Register

The word size (SZ), read/write (RW), priority (PR), map select (MAP), and access
count (CNT) fields are written to by the tool to set up access attributes. The
access control (AC) field is asserted by the tool to initiate an access or is negated
by the tool to cancel an access in progress. The AC field is negated by the
embedded processor upon completion of the access requested by the tool.

The SZ and RW bits determine the access size and whether it is a read or a write.
The PR bits are intended to allow for implementations that perform a variety of
access priorities, from a lowest intrusive access (0b00) to a highest intrusive
access (0b11). The exact meaning of the encodings are vendor defined.

The MAP bits are intended to allow for multiple memory maps to be accessed. The
primary processor memory map should be designated as the default (MAP = 000).
Secondary memory maps, such as special-purpose processor memory maps,
which are implemented in some processor architectures, may also require access.

To request a block move, the CNT field is set by the tool to a value greater than 0.
The address range for a block move is from RWA to RWA + CNT. The CNT field
should not be decremented by the embedded processor during an in-progress
block move. Upon completion of a block move, the embedded processor should
negate the AC field and set the CNT field to a value of 0.

If the RWCS Register is written to while any single or block access is in progress,
the target will terminate the access, including any remaining block accesses,
within one access cycle of the target. In this case, the access in progress when
the RWCS Register is written to is not guaranteed to complete (see Table B-11).

Page 144 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
If an error is generated during a block access, the block access will be terminated
(see Table B-12).

B.6.4 RWA Register

The RWA Register is used by the tool to program the address of user memory-
mapped resource to be accessed or the lowest address (i.e., lowest unsigned
value) for a block move (CNT > 0). The address range for a block move is from
RWA to RWA + CNT.

Table B-11—Read/Write Access Status Bit Encoding

DV ERR Read Action Write Action

0 0 Read Access has not completed Write Access completed without error

0 1 Read Access error has occurred Write Access error has occurred

1 0 Read Access completed without error Write Access has not completed

1 1 Not Allowed Not allowed

Table B-12—Read/Write Block Access

Bit
Number

Field
Name

Description

31 AC
AC - Access Control
0 = End Access
1 = Start access

30 RW
RW - Read/Write
0 = Read access
1 = Write access

29–27 SZ

SZ - Word Size
000 = 8-bit
001 = 16-bit
010 = 32-bit
011 = 64-bit
1xx = Reserved

26–24 MAP
MAP - Map Select
000 = Primary memory map
001–111 = Other memory maps

23–22 PR
PR - Priority
bb = Access priority

21–16 — Reserved

15–2 CNT
CNT - Access Count
hhhh = Number of accesses of word size SZ

1 ERR Last access generated an error

0 DV Data valid in RWD
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 145 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
The size of the RWA Register is vendor defined (see Table B-13).

B.6.5 RWD Register

The RWD Register is used to contain the data to be written for the next block write
access and the read data for completed read accesses.

The size of the RWD Register is vendor defined (see Table B-14).

For read and write accesses, the register may contain different sizes of data. The
following is the organization for three different sizes of data.

B.7 NRRs - Data Trace

The data trace registers allow DTM to be restricted to reads, writes, or both for a
programmable user address range. Three registers are used for selecting the
data trace attributes:

• Data Trace Control (DTC)

• Data Trace Start Address (DTSA)

• Data Trace End Address (DTEA)

These registers are recommended for embedded processors complying with
Class 3 or 4.

Table B-13—RWA Register

Bit
Number

Packet
Name

Description

Vendor-
defined

RWA User memory-mapped address to be accessed

Table B-14—RWD Register

Bit
Number

Packet
Name

Description

Vendor-
defined

RWD
Data read from a user memory-mapped location or to
be written to a user memory-mapped location

LSB

8 bit Reserved - Read as Zeros LS Byte

16 bit Reserved - Read as Zeros MS Byte LS Byte

32 bit MS Byte LS Byte

Page 146 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
B.7.1 DTC Register

Read/Write trace (RWTn) bits select for each data trace channel (up to six data
trace channels) if no trace messages are generated or if reads, writes, or both
generate Data Trace Messages. If the RWTn bit selects data trace for reads and/
or writes, all selected accesses within the address range specified by DTSA to
DTEA, end points inclusive, will generate Data Trace Messages (see Table B-15).

B.7.2 DTSA Register and DTEA Register

The DTSA Register and DTEA Register are used by the tool to program the start
and end addresses for a data trace channel. If RWTn selects data trace for reads
and/or writes, all selected accesses within the address range specified by DTSA
to DTEA, end points inclusive, will generate Data Trace Messages.

The size of the DTSA Register and DTEA Register is device specific (see
Table B-16 and Table B-17).

Table B-15—DTC Register

Bit
Number

Field
Name

Description

31–30 RWT0

RWT0 - Read/Write Trace 0
00 = No Data Trace Messages generated
x1 = Enable data read trace
1x = Enable data write trace

29–28 RWT1

RWT1 - Read/Write Trace 1
00 = No Data Trace Messages generated
x1 = Enable data read trace
1x = Enable data write trace

27–26 RWT2

RWT2 - Read/Write Trace 2
00 = No Data Trace Messages generated
x1 = Enable data read trace
1x = Enable data write trace

25–24 RWT3

RWT3 - Read/Write Trace 3
00 = No Data Trace Messages generated
x1 = Enable data read trace
1x = Enable data write trace

23–22 RWT4

RWT4 - Read/Write Trace 4
00 = No Data Trace Messages generated
x1 = Enable data read trace
1x = Enable data write trace

21–20 RWT5

RWT5 - Read/Write Trace 5
00 = No Data Trace Messages generated
x1 = Enable data read trace
1x = Enable data write trace

19–8 — Reserved

7–0 — Vendor-defined
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 147 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
B.8 NRRs - Breakpoint/Watchpoint

The breakpoint/watchpoint registers provide control for breakpoint and watchpoint
logic. Three registers are used for controlling the breakpoints/watchpoints:

• Breakpoint/Watchpoint Control (BWC)

• Breakpoint/Watchpoint Address (BWA)

• Breakpoint/Watchpoint Data (BWD)

These registers are recommended for embedded processors complying with
Class 4.

B.8.1 BWC Register

For all breakpoints to be enabled, the DBE field must be set to enable debug
mode (refer to B.5.3 - Development Control (DC) Register). When debug mode
is enabled, individual breakpoints can be enabled with the breakpoint/watchpoint
enable (BWE) field. Watchpoints are enabled with the BWE field regardless of the
state of the DBE field.

The breakpoint/watchpoint read/write select (BRW) field determines whether a
read, write, or any access will cause a breakpoint. The breakpoint/watchpoint
address/data mask enable (BME) field selects the data-mask-enable to be on a
particular byte, half-word (2-byte), or word (4-byte) lane. Because the breakpoint
data size unit is device specific, the breakpoint/watchpoint data size unit (BSU)
field is read-only to indicate to the tool if the data size unit is 1 byte, 2 bytes, or 4
bytes. For example, with 32-bit machines, the 4 MSBs of the BME field may be
reserved and the LSBs may be used to enable masking of byte lanes (assuming
BSU = 00). The breakpoint/watchpoint operand (BWO) field indicates whether the

Table B-16—DTSA Register

Bit
Number

Packet
Name

Description

Vendor-
defined

DTSA Start address for data trace visibility

Table B-17—DTEA Register

Bit
Number

Packet
Name

Description

Vendor-
defined

DTEA End address for data trace visibility

Page 148 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
BWA Register and/or the BWD Register is used for the breakpoint condition, and
the breakpoint/watchpoint type (BWT) field selects the breakpoint operand as
instruction or data.

The EVTO control (EOC) field selects if the breakpoint status indication is output
on the EVTO pin (see Table B-18).

Watchpoints can be assigned actions listed in Table B-10.

If logical conditions of breakpoint or watchpoint detections are needed or if
counting N watchpoints is needed for development, the vendor-defined field can
be defined to provide these or other features.

Table B-18—BWC Register

Bit
Number

Field
Name

Description

31–30 BWE

BWE - Breakpoint/Watchpoint Enable
00 = Disabled
01 = Breakpoint enabled
10 = Reserved
11 = Watchpoint enabled

29–28 BRW

BRW - Breakpoint/Watchpoint Read/Write Select
00 = Break on read access
01 = Break on write access
10 = Break on any access
11 = Reserved

27–20 BME

BME - Breakpoint/Watchpoint Address/Data Mask Enable
1XXXXXXX = Mask MS address/data size unit

XXXXXXX1 = Mask LS address/data size unit

19–18 BSU

BSU - Breakpoint/Watchpoint Data Size Unit (read only)
00 = Data size unit is 1 byte
01 = Data size unit is 2 bytes
10 = Data size unit is 4 bytes
11 = Reserved

17–16 BWO
BWO - Breakpoint/Watchpoint Operand
1X = Compare with BWA value
X1 = Compare with BWD value

15 BWT
BWT - Breakpoint/Watchpoint Type
0 = Compare for instruction types
1 = Compare for data types

14 EOC

EOC - EVTO Control (optional)
0 = Breakpoint/watchpoint status indication not output

on EVTO
1 = Breakpoint/watchpoint status indication is output on

EVTO

13–8 — Reserved

7–0 — Vendor-defined

…

Copyright © 2003 IEEE-ISTO. All rights reserved. Page 149 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
B.8.2 BWA Register

The BWA Register is used to compare against address operands (address of
instruction or data). The size of the BWA Register is vendor defined (see Table B-
19).

B.8.3 BWD Register

The BWD Register is used to compare against data operands (instruction opcode
or data value). The size of the BWD Register is vendor defined (see Table B-
20).

B.9 NRRs Concatenated for Better Transfer Efficiency

The NRRs may be concatenated as shown in Table B-21 for better efficiency of
transfers between the target and tool. For example, performing writes to configure
the RWCS Register, RWA Register, and RWD Register to write a value to a user
memory-mapped location requires only one Write Register Message instead of
three (one for each register).

Table B-19—BWA Register

Bit
Number

Packet
Name

Description

Vendor-
defined

BWA
Address of instruction or data for breakpoint or watch-
point generation

Table B-20—BWD Register

Bit
Number

Packet
Name

Description

Vendor-
defined

BWD
Instruction opcode or data value for breakpoint or
watchpoint generation

Table B-21—NRRs Concatenated

Concatenated NRRs Register Index
Read/
Write

RWCS || RWA || RWD 55 R/W

BWC0 || BWA0 || BWD0 56 R/W

BWC1 || BWA1 || BWD1 57 R/W

BWC2 || BWA2 || BWD2 58 R/W

BWC3 || BWA3 || BWD3 59 R/W

BWC4 || BWA4 || BWD4 60 R/W

BWC5 || BWA5 || BWD5 61 R/W

BWC6 || BWA6 || BWD6 62 R/W

BWC7 || BWA7 || BWD7 63 R/W

Page 150 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
For the Write Register Message or Read/Write Response Message, the REGVAL
packet will contain the right-most register (LSB first), followed by the center
register (LSB first), followed by the left-most register of Table B-21.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 151 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard

Page 152 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
APPENDIX C
Data Acquisition in Tuning for Applications

C.1 Additional Needs for Automotive Powertrain and Disk Drive Development

The development cycle for mechanical and electro-mechanical control
applications includes additional needs for calibration of mechanical performance-
related constants that are tuned for specific loads. The calibration process is
performed during runtime. For calibration, the basic needs for development tools
are

1. To acquire during mechanical operation (e.g., running an engine)
rotational position synchronous data relating to calibration factors as
they are being used or modified during high-speed transient events.
Data acquisition should be accomplished with minimal impact to the
system under development.

2. To acquire during mechanical operation, time synchronous data relating
to calibration factors as they are being used or modified during high-
speed transient events. Data acquisition should be accomplished with
minimal impact to the system under development.

3. To coherently modify table(s) of calibration constants during mechanical
operation.

Refer to the white paper, The Evolution of Powertrain Microcontrollers and its
Impact on Development Processes and Tools, for more information on automotive
powertrain development needs. A copy of the paper can be found on the Nexus
web site, http://www.nexus5001.org/microcontrollers_evolution.pdf.

For applications such as automotive powertrain, disk drive control, and wireless,
visibility of selected program variables (called calibration variables) must be
provided to enable accurate tuning of selected program constants (called
calibration constants). When calibration variables are stored in internal RAM, the
data must be acquired from the embedded processor during runtime. Additionally,
when calibration constants are stored in internal ROM, these constants must be
tuned during runtime to determine the optimal values.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 153 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard
C.2 Data Acquisition or Measurement of Calibration Variables

Two options are explained in C.2.1 - DTM Option and C.2.2 - Read/Write
Access Option to meet the data acquisition needs discussed in C.1 - Additional
Needs for Automotive Powertrain and Disk Drive Development. The first
utilizes DTM and the second utilizes the Read/Write Access feature.

C.2.1 DTM Option

One technique to accomplish data acquisition would be to set up a data trace
window for all internal embedded processor memory-mapped locations that
require acquisition. Depending upon the application, this window may include
non-calibration data. Coherency (i.e., demarcating old data from new data) would
be provided with a specific embedded processor data write sequence or with a
watchpoint occurrence and message. Care should be taken to assure that the
data trace bandwidth requirements do not exceed the performance capability of
the AUX.

Alternately, the embedded processor could queue up calibration variables for
acquisition by the development tool by writing them to contiguous locations in a
data trace window, e.g., contiguous locations in system RAM. Dedicated locations
in the data trace window would be used to distinguish each group of calibration
variables. Coherency would be provided with a specific embedded processor data
write sequence or with a watchpoint occurrence and message. Again, care should
be taken to assure that the data trace bandwidth requirements do not exceed the
performance capability of the AUX.

C.2.2 Read/Write Access Option

Another technique to accomplish data acquisition would be to designate
contiguous locations in a system RAM for all calibration variables. Calibration
variables would be copied by the embedded processor from the source to these
RAM locations prior to acquisition by the tool. The use of a specific embedded
processor data write sequence or of a watchpoint occurrence and message
signals the tool to acquire the calibration variables. The tool would acquire the
calibration variables using the Read/Write Access feature.

C.3 Tuning of Calibration Constants

The Nexus standard provides features to support program execution tuning, also
referred to as calibration constant tuning, which is required to tune electro-
mechanical systems for a variety of loads, such as for automotive powertrain and
disk drive applications.

Page 154 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
The Nexus standard provides download capability for calibration constants to be
tuned during runtime using a vendor-defined tuning block internal to the
embedded processor. The Read/Write Access feature provides access to vendor-
defined blocks, either via the IEEE 1149.1 interface or the auxiliary pin interface,
when the processor is halted or running. The auxiliary pin interface may be
preferred for better performance capability, e.g., if simultaneous tuning and rapid
prototyping are required.

Prior art solutions used as the vendor-defined tuning block include a bondout
version of the embedded processor that allows an external RAM to overlay
calibration constants in the internal ROM. The overlay RAM is accessible by the
development tool. To provide coherency of modifications from the development
tool, the overlay may comprise two identical RAMs, which are alternately enabled
for overlay. The disabled RAM would be available to the tool for the latest tuning
information and would then be swapped in. For this prior art, all accesses could be
managed by the development tool via the AUX.
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 155 of 157

IEEE-ISTO 5001™-2003 The Nexus 5001 Forum™ Standard

Page 156 of 157 Copyright © 2003 IEEE-ISTO. All rights reserved.

for a Global Embedded Processor Debug Interface IEEE-ISTO 5001™-2003
APPENDIX D
Bibliography

IEEE Std 1149.1-1990, IEEE Standard Test Access Port and Boundary-Scan
Architecture (includes IEEE Std 1149.1a-1993).

The Evolution of Powertrain Microcontrollers and its Impact on Development
Processes and Tools, Motorola/Hewlett Packard white paper.

Proposal to Extend the IEEE-ISTO 5001 Global Embedded Processor Debug
Interface Standard to Incorporate Software Quality Assurance Capability, Hugh
O’Keeffe, Ashling Microsystems Ltd.

Proposal to Extend the IEEE-ISTO 5001 GEPDIS (Global Embedded Processor
Debug Interface Standard), Jean-Francis Duret, ST Microelectronics

Comments about Nexus Trace, Laurent Regnier, ST Microelectronics

Nexus Extensions, Steve Allen, Alphamosiac

IEEE-ISTO 5001 Change Proposal, Bryan Weston, Motorola
Copyright © 2003 IEEE-ISTO. All rights reserved. Page 157 of 157

	Title page
	History
	Abstract
	Keywords
	Copyright
	About the IEEE-ISTO
	About the Nexus 5001 Forum
	Feedback
	Preface
	SECTION 1 Introduction
	1.1 Overview
	1.2 Basic Development Needs for Embedded Processors
	1.3 Useful Development Features for Embedded Processors
	1.4 Terms and Definitions
	1.5 Conventions
	1.6 Other Terminology within the Nexus Standard

	SECTION 2 Compliance and Performance Classifications
	2.1 Compliance Classification
	2.2 Performance Classification

	SECTION 3 Nexus Development Interface
	3.1 Overview
	3.2 IEEE 1149.1 Pin Interface
	3.3 Nexus Auxiliary Pin Interface

	SECTION 4 Nexus Development Features
	4.1 Application Programming Interface (API)
	4.2 Development Control and Status
	4.3 Ownership Trace
	4.4 Program Trace
	4.5 Data Trace
	4.6 Read/Write Access
	4.7 Memory Substitution
	4.8 Breakpoints/Watchpoints
	4.9 Port Replacement and Port Sharing (Optional)
	4.10 Data Acquisition (Optional)
	4.11 Timestamping (Optional)

	SECTION 5 Nexus Public Messages
	5.1 Compliance Requirements for Public Messages
	5.2 Definitions and Terminology
	5.3 Detailed Description of Public Messages
	5.4 NRR Access Messages - Example Sequences
	5.5 Memory Access Messages - Example Sequences

	SECTION 6 Nexus Port Signals
	6.1 IEEE 1149.1 Pin Functions
	6.2 Nexus Auxiliary Pin Functions
	6.3 Sample Port Implementations

	SECTION 7 AUX Message Protocol
	7.1 Rules for Messages
	7.2 Example AUX Messages Using Nexus Protocol

	SECTION 8 IEEE 1149.1 Message Protocol
	8.1 IEEE 1149.1 Compatibility
	8.2 Accessing NRRs via the IEEE 1149.1 Port
	8.3 Read/Write Access via the IEEE 1149.1 Port
	8.4 Accessing Nexus Public Messages via the IEEE 1149.1 Port
	8.5 Sample IEEE 1149.1 Access Sequences

	SECTION 9 Implementation Topics
	9.1 Nexus Reset Configuration
	9.2 Multiple Processor Implementations
	9.3 Multiple Address Threads
	9.4 Simultaneous Development of Multiple Embedded Processors
	9.5 Security
	9.6 Single Master for Tool Connection

	APPENDIX A Connector and Electrical Specifications
	APPENDIX B Recommendations for Access to Control and Status Registers
	APPENDIX C Data Acquisition in Tuning for Applications
	APPENDIX D Bibliography

